
EMC®®® Documentum®®®

xDB

Version 10.5

Manual

EMC Corporation
Corporate Headquarters:

Hopkinton, MA 01748 9103
1 508 435 1000
www.EMC.com

Copyright © 2000-2013 EMC Corporation. All rights reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change without
notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED "AS IS." EMC CORPORATION MAKES NO
REPRESENTATIONS ORWARRANTIES OF ANY KINDWITH RESPECT TO THE INFORMATION IN THIS PUBLICATION,
AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. Adobe and Adobe PDF
Library are trademarks or registered trademarks of Adobbe Systems Inc, in the U.S. and other countries. All other trademarks used
herein are the property of their respective owners.

Documentation Feedback

Your opinion matters. We want to hear from you regarding our product documentation. If you have feedback about how we can
make our documentation better or easier to use, please send us your feedback directly at IIGDocumentationFeedback@emc.com.

Table of Contents

Chapter 1 Quick Start ...35
Getting a quick start with xDB ...35

Chapter 2 Introduction..37
xDB Overview ..37
General features ..37
Linking documents with XLink ...40
Versioning and branching..40
Administration tools ..41
Logical architecture ..42
Superuser ..42
Transaction log files ..43
Database objects ..43

Internal structure: databases, segments, files and pages45
Database files...46
Database configurations ..46

Detachable libraries..46
Managing users and groups..47

Chapter 3 Installing xDB...49
Pre-installation requirements...49
Installing xDB on a Windows platform ..50
Upgrading xDB on Windows ...57
Installing xDB on a UNIX platform..59
Upgrading xDB on UNIX ...61
Uninstalling xDB...61
Verifying the xDB installation ...61
Creating a sample database ...62

Chapter 4 Configuring xDB...65
Configuration files for Windows ...68
xDB JAR files...68
Using the xhive.bootstrap property ..69
The xDB dedicated page server ..70
Running a background server process on UNIX ..70
Running without a dedicated server..71

Using external editors with FTP...71
Managing DTDs..71
Troubleshooting DTDs...72

EMC Documentum xDB Version 10.5 Manual 3

Table of Contents

Enabling FIPS 140-2 Level 1 Encryption ..73
Chapter 5 Optimizing Performance...75

Improving server performance...75
Configuring JVM and cache pages ..75
Choosing the database page size..77
Linux file system performance...77
Using multiple disks..77
Disabling disk-write caches ...78
RPC tracing ...78
Enabling or disabling RPC tracing ..79
Enabling RPC tracing at system level ...80
Sending RPC trace output to console or file ..80
Methods for RPC tracing ..81
RPC Trace XML schema example..81

Chapter 6 Creating Applications...83
Building and running applications ..83
Running a sample ..84
Creating a database using the API ..84
Connecting to a database ...85
Getting a database configuration ...86
Using sessions and transactions ...86
Creating libraries ..88
Storing BLOBs ...89
API methods for managing users and groups ...90
Using a RAM segment for temporary data..91
The xDB dedicated page server program...92
Using the FederationSet API ...92
Using xDB with Maven 2...94
Using xDB with Spring ..94
xDB and OSGi ...96
Using xDB with JAAS ..97
Using the API with SSL...97

Chapter 7 Managing Documents in Applications..99
Creating and managing documents ...99
Parsing XML documents...99
Parse with context... 100

Validating XML documents.. 101
Normalizing XML documents ... 102

Storing XML documents.. 103
DOM configuration settings ... 103
Importing non-XML data ... 106

4 EMC Documentum xDB Version 10.5 Manual

Table of Contents

Creating a document .. 108
Retrieving documents and document parts... 109
Using DOM operations .. 110
Using document ID ... 111
Using document name .. 111
Using XQuery ... 112
Using indexes ... 112
Using XPointer with library path ... 112
Using XPath and XPointer ... 114

Traversing XML documents... 116
Using DOM traversal ... 116
Traversing using function objects ... 119

Exporting XML documents .. 120
Publishing XML documents... 121
XLink interfaces ... 122
Using versioning... 123
Working with versioned documents.. 123
Retrieving previous document versions .. 124
Branching methods ... 124
Node-level versioning.. 125

Using searchable versions .. 125
Using metadata on library children... 126
Using abstract schemas.. 126
Using the APIs for XSL transformations ... 127

Chapter 8 Session and Transaction Management... 133
Sessions, transactions and locking .. 133
Namebase and locking ... 134
Session lifecycle... 134
Joined sessions and session pools... 136
Sessions and references to database objects ... 140

Referencing database objects in sessions.. 144
Multithreaded session handling ... 144
Transaction isolation in sessions ... 146
Managing locking conflicts .. 146
Read-only transactions ... 148
Getting info on sessions and locks... 148

Chapter 9 Managing Indexes .. 149
Indexes ... 150
Index APIs and samples ... 150
Path indexes.. 151
Multipath indexes ... 153
Multipath index examples .. 153
Differences between multipath and path indexes... 156
Multipath index limitations.. 160

EMC Documentum xDB Version 10.5 Manual 5

Table of Contents

Multipath indexing methods... 160
Customizing the score of multipath indexes .. 161

Value indexes .. 161
Using value types for value indexes ... 161

Value indexing methods.. 162
Full-text indexes ... 163
Full-text indexing methods .. 164
Metadata value indexes .. 164
Metadata full text indexes ... 164
Library indexes... 165
Library indexing methods .. 165
ID attribute indexes .. 166
ID attribute indexing methods.. 166
Element name indexes ... 167
Element name indexing methods... 167
Concurrent indexes .. 167
Concurrent indexing methods.. 168
Non-blocking incremental indexes ... 168
Context conditioned indexes ... 168
Context conditioned indexing methods... 169
Optimizing index performance... 170
Indexes and timezones... 171

Chapter 10 XQuery ... 173
Working with XQueries ... 173
Working with XQuery methods .. 173
External XQuery variables and functions.. 175
Accessing documents and libraries with XQuery... 178
XQuery error reporting.. 178
XQuery options and extension expressions.. 179
XQuery extension functions .. 182
Using XQuery extension function xhive:force .. 188
Using XQuery extension function xhive:highlight ... 188

Using indexes in XQuery .. 188
Value and name element indexes... 189
Range queries .. 191
Indexing metadata .. 191
Multiple indexes .. 191
Indexes and order by... 192

Proprietary XQuery extension to order by... 193
Using type information in XQuery .. 194

6 EMC Documentum xDB Version 10.5 Manual

Table of Contents

XQuery full-text search ... 194
Full-text search limitations ... 195
Full-text logic operators ... 195
Queries with wildcards .. 195
Queries with fuzzy search.. 196
Queries with thesaurus.. 196
Queries with thesaurus handler.. 196
Anyall options ... 197
Positional filters .. 197
Cardinality option .. 198
Score variables... 198
Score calculation .. 199
Boost scoring models .. 199
Using boost scoring models ... 200

Using the xhive:fts full-text search function... 201
XQuery performance tuning .. 204
XQuery collation support... 206
XQuery Profiler .. 206
XQuery profiling methods.. 207
XQuery implementation .. 207
XQuery Security Features ... 209
XQuery security methods .. 209
XQuery modules ... 209
XQuery XML Schema support.. 210
XQuery Update Syntax.. 211
Proprietary XQuery Update Syntax... 211
Data model differences.. 213
Additional XQuery namespace declarations .. 213

Chapter 11 More methods for XQuery .. 215
Use of type information in XQuery ... 215
Parallel queries .. 215
Using the XQuery Resolver... 217
Preparing XQueries .. 217
Extending XQuery using Java ... 218
Java objects and instance methods.. 218
Type checking... 219
Limitations .. 219

Chapter 12 Catalogs and Validation.. 221
xDB catalogs.. 221
Adding models to a catalog ... 222
Linking models to documents .. 222
Validated parsing.. 223
Catalog methods .. 224
Validating documents against models .. 224
Post Validation Schema Infoset (PSVI) .. 224
Accessing PSVI information .. 225

EMC Documentum xDB Version 10.5 Manual 7

Table of Contents

Chapter 13 Administering xDB ... 227
Admin Client .. 227
Using the xDB Admin Client... 228
Creating a database using the Admin Client.. 230
Database configuration files... 230
Changing the superuser password using the Admin Client............................. 232
Changing the administrator password using the Admin Client 232
Changing a user password using the Admin Client .. 233
Importing data .. 234
Exporting data .. 235
Backing up a federation... 235
Restoring a federation backup ... 236
Serializing data ... 237
Deserializing data ... 238
Deserializing the root library... 238
Serializing users and groups.. 239
Deserializing users and groups .. 239
Comparison of online backup and serialization.. 239
Editing documents .. 240
Adding indexes ... 241
Running queries.. 241
Profiling XQueries ... 243

Web client.. 246
Using the command-line client... 246
Command-line client commands .. 248
Creating a federation... 250
Creating a database using the command line.. 251
The xdb info command .. 251
Command-line client gobal options... 251

Creating and restoring backups... 262
Running incremental backups .. 263
The xdb backup command... 263
The xdb restore command ... 264
Restoring lost data from log files .. 265
Viewing backup metadata.. 266
Offline backups ... 266
Suspending xDB activity for snapshot backups ... 266
Backing up and restoring a library .. 267
Commands for backing up and restoring a library.. 268
Methods for creating and restoring backups.. 268

Managing detachable libraries... 272
Moving a detachable library ... 274
Unusable detachable libraries .. 275

Duplicated transaction log files .. 275
Methods for transaction log duplication... 276

Monitoring statistics .. 277
Enabling statistics monitoring... 278
Consuming monitored xDB statistics .. 278
Monitored statistics categories ... 279

RAM segments .. 281
Read-only federations... 281

8 EMC Documentum xDB Version 10.5 Manual

Table of Contents

Federation sets .. 281
Creating a federation set ... 282
Using federation sets... 282

Using Secure Sockets Layer (SSL).. 283
Checking database consistency .. 283
Methods for consistency checking.. 284

Message logging .. 286
Message logging areas... 287
Message logging framework ... 287

Chapter 14 Replicating Federations ... 289
Replication... 289
Creating a federation replica ... 290
Running a replicator on a dedicated server .. 291
Replication of federation metadata .. 291
Changing a replica into a master ... 292
Removing a replica... 292
Methods for replication ... 293
Methods for using a federation replica ... 293
Running a replicator on an internal server... 293
Read-only transactions with temporary data.. 293
Using a replica as a failover ... 294
Preparing for replication .. 294
Replication application code sample... 295

Chapter 15 Configuring Multiple Backend Servers... 297
xDB multi-node architecture .. 297
Transaction recovery .. 299
Multi-node bootstrap configuration... 299
Server upgrade from older xDB release.. 301

Multi-node considerations ... 302
Multi-node run-time restrictions ... 303
Managing nodes... 303
Methods for multi-node deployment ... 304
Methods for managing nodes... 304
Locking rules .. 305
Disabling distributed deadlock detection ... 305
Modifying library bindings .. 305
Applications for multiple-node configurations .. 306
Multiple-node API examples .. 310
Replacing a server .. 314

Chapter 16 Ant Tasks ... 317
Using xDB Ant tasks... 317
Using the xhive.bootstrap property with Ant.. 318
xDB Ant type reference... 318
Referencing xDB Ant types ... 322
xDB Ant task reference... 323

EMC Documentum xDB Version 10.5 Manual 9

Preface

xDB Documentation

This xDB Manual is designed to provide a technical introduction to the EMC Documentum xDB
product. It contains basic xDB information, and discusses installing, configuring, administering and
using xDB for software development. There is also more detailed information on more advanced
subjects, on specific aspects of xDB, and on using xDB in combination with other tools.

The xDB distribution includes further information for developers, including API documentation
and sample code.

Intended audience

This manual is for xDB developers and administrators. It assumes that the reader is familiar with:

• Java and XML

• the operating system that is used with xDB

• basic database principles such as transactions, locking, and access rights

• general principles of client/server architecture and networking

Some knowledge of DOM, XQuery, and XSLT is helpful but not required.

Resources

The XML Technologies section of the EMC Developer Network offers resources related to xDB,
information about specific aspects of xDB and its use, case studies, tools and sample code that you
can download.

Support information
EMC Documentum technical support services are designed to make deployment and management
of Documentum products as effective as possible.

EMC Documentum xDB Version 10.5 Manual 11

https://community.emc.com/community/edn/xmltech

Preface

For the latest product documentation and support materials, including White Papers and Technical
Advisories, refer to EMC Online Support (https://support.emc.com). Check regularly for new and
updated documentation to ensure that you have the latest system information.

Note: Documentation installed, or packaged with the product on the download center, is current at
the time of release. Documentation updates made after a release are available for download from
EMC Online Support (https://support.emc.com).

Typographic conventions
The following table describes the typographic conventions used in this guide.

Table 1 Typographic conventions

Appearance Meaning

Fixed terms Terminology, such as names of features, standards, etc.

User interface control User interface controls, such as menu entries, buttons, etc.

API names Application Programming Interface elements, such as classes and methods
in Java APIs.

Monospaced text Example code, parameter values.

Commands Commands and their arguments, to be entered in a command prompt.

File paths Paths to files in the file system, usually relative to the installation directory.

Variable Names Variables in command strings and user input variables

Revision History

Changes in release 10.5

• Added a system property PROP_TRACING_ON=true/false, to make it possible to disable RPC
tracing completely.

• The xhive.jar has been made OSGi compatible. In addition, xhive-api.jar and xhive-impl.jar
OSGi bundles have been introduced for use with OSGi Declarative Services; see the updated
OSGi sample application.

• xDB now requires xml-apis.jar as a core dependency.
• Introduced XhiveDriverFactory.getBackupDriver() API for obtaining a driver that operates on a
federation backup (read-only federation mode).

• Added log output for startup recovery.
• Added support for switching off transactional logging on the library level.
• Added XhiveBackupInfoIf.getBackupLSNs() which returns the backup LSN of each and every
node involved in the backup.

12 EMC Documentum xDB Version 10.5 Manual

Preface

• Fixed a concurrency issue with the hot backup functionality which prevented users from
connecting to the server when the backup was in progress.

• Fixed a bug that causes the backup LSN returned by XhiveBackupInfo.getBackupLSN() to be 0.
• Made the API specification of XhiveBackupInfoIf.getBackupLSNs() clearer about the return
value of XhiveBackupInfoIf.getBackupLSN().

• Fixed the problem that the bootstrap log record generated for
XhiveLibraryIf.removeBinding(String) is wrong.

• Fixed a recovery issue which might happen if the system crashes at the moment of lucene
segment shrinking.

• Fixed a recovery issue which might cause bootstrap file inconsistency if the system crashes.
• Fixed an issue with read-only federations that caused a NPE when obtaining segment information
for detachable libraries.

• Fixed an issue with read-only federations where an attempt would be made to modify temporary
segments.

• Fixed an issue with read-only federations where an attempt would be made to update the
bootstrap file.

• Fixed a bug which in rare cases could cause a federation backup to hang.
• Fixed a deadlock which occurs when a user thread and a system both tried to kill the server.
• Made XhiveLibraryIf.attach(String, String, String, XhiveFederationFactoryIf.SegmentIdMapper)
official.

• The startup logic will now try to fix violations of data file naming convention.
• Indexes: Deprecated com.xhive.index.interfaces.TokenMetadata and introduced a custom xDB
Lucene attribute com.xhive.index.interfaces.XhiveWeightAttribute to be used instead.

• Indexes: Fixed an issue where non-Administrator could not create/delete multipath indexes.
• Indexes: Fixed an issue where multipath indexes ignored date-times with timezone.
• Indexes: Support for unique keys option in the concurrent B-tree indexes.
• Indexes: Support for concurrent multipath indexes.
• Indexes: Support for intra-collection parallelism in multipath indexes.
• Indexes: Support by IndexInConstructionList and IndexInConstruction of all of the index types,
except for LibraryID and LibraryName.

• Indexes: Support for concurrent indexing session of IndexInConstruction.
• Indexes: Added moveToIndexList(threshold) method to IndexInConstructionListIf, which
attempts to index a number of nodes before moving the index.

• XQuery: Updated to the XPath and XQuery Functions and Operators 3.0 spec of 21 May
2013. Note: All functions that operate on function items as their arguments have changed.
Functions fn:map and fn:map-pairs are renamed to respectively fn:for-each and fn:for-each-pair.
In addition, the signatures of fn:filter, fn:fold-left and fn:fold-right have changed. As a result,
the old functions fn:map, fn:map-pairs, fn:filter, fn:fold-left and fn:fold-right as defined in the
previous spec version (08 January 2013) are no longer supported.

• XQuery: Support for XQuery 3.0 Decimal Format Declarations and fn:format-number.
• XQuery: Support for XQuery Copy-Namespaces declaration.
• XQuery: Support for parallel execution of fn:for-each.
• XQuery: Added extension function xhive:get-metadata-keys to get the metadata keys of one
or more documents.

EMC Documentum xDB Version 10.5 Manual 13

Preface

• XQuery: Changed the default implicit timezone from local time to PT0H. Note: WARNING:
this change may lead to different results for XQuery functions that depend on the implicit
timezone, like fn:current-dateTime, fn:adjust-dateTime-to-timezone and fn:implicit-timezone.
Refer to the manual sections on option xhive:implicit-timezone and ’Indexes and timezones’
for more information on the subject.

• XQuery: Fixed an issue where comparison of 2 dateTimes was not correct if only one had a
timezone.

• XQuery: Fixed a multi-path index bug causing wrong score to be calculated in XQueries that
used score but did not order by score.

• XQuery: Fixed a bug where usage of a for clause with ’allowing empty’ could throw an
ArrayIndexOutOfBoundsException.

• XQuery: fixed 5 xquery pretty printer issues. Some of these issues could make an xquery
unparsable.

• XQuery: Added documentation of the xhive:return-blobs XQuery option to the manual.
• XQuery: Fixed an issue where a user defined function throwing an fn:error caused another
exception whithout the original fn:error message.

• XQuery: Fixed namespace support in the xhive:index-paths-values XQuery option.
• XQuery: Fixed a bug where fn:doc-available on an empty library caused a NPE.
• XQuery: Added interface XhiveXQueryParallelJobIf to access sub-query info during parallel
query execution.

• XQuery: Added extension function xhive:version-id($doc) to be used in conjunction with
xhive:collection-*-date() functions.

• Admin client, command line client and ant: added support to access a federation through a
federation set (description file or server). The path to such a federation contains a hash. The part
before the hash should point to the set, the part after the hash should navigate to the federation.
When creating a federation bootstrap file, its path should not contain a hash.

• Command line client and Ant: Added new commands (add-file, set-file-maxsize) and new Ant
tasks (<addsegmentfile/>, <setmaxfilesize>). Added a check so that the maxsize of a datafile (if
specified) has to be at least 10 pages.

• Admin client: Now able to parse IPv6 addresses.
• Admin client: No longer lists reserved segments, as it cannot display information for
non-existent data files.

• Admin client: Using Check out/ Edit/ Checkin now preserves existing metadata entries.
• Admin client: It is now possible to edit metadata entries on versions.
• Admin client: Now has functionality for creating/updating indexes with the version info option,
allowing the creation of versioned documents with this structure.

• Command line client: Extended the check-federation, check-database, check-node, and
check-library command-line tools to support consistency checking of federation backups.

• Added support to keep duplicated transaction log files, per server node, in multiple locations.
• Added interface XhiveLogConfiugurationIf to manage multiple transaction log files locations.
• Modified file extension (from .log to .wal) for transaction log files and xhive_checkpoint.log and
xhive_id.log files as well.

• Command line client: Extended the create-federation and add-node command-line tools to
support multiple log directories.

14 EMC Documentum xDB Version 10.5 Manual

Preface

• Command line client: Added new commands (add-log-directory, remove-log-directory) to add
and remove a secondary transaction log files directory.

• Fixed issue with multipath indexes that have a wildcard in namespace of subpaths (//{*}el) where
updates to documents might not get propagated to the index.

Changes in release 10.4.1

• Spring:Added interface com.xhive.spring.interfaces.XhiveDataSourceIf. Customers can
implement their own XhiveDataSource by implementing this interface. Minal sample
implementation is shown in the Javadoc. Our implementation of this interface is class
com.xhive.spring.XhiveDataSource which is made final

• No longer list reserved segments in xDB admin client as it cannot display information for
non-existent data files.

• Fixed the problem that the bootstrap log record generated for
XhiveLibraryIf.removeBinding(String) is wrong.

• Fixed a deadlock which occurs when a user thread and a system are both trying to kill the server.
• Fixed a bug which in rare cases can cause a federation backup to hang.
• XQuery: Fixed a multi-path index bug causing wrong score to be sent to remote clients in
some cases.

• XQuery: Fixed a bug where usage of a for clause with ’allowing empty’ could throw an
ArrayIndexOutOfBoundsException.

• XQuery: Fixed 5 xquery pretty printer issues. Some of these issues could make an xquery
unparsable.

• XQuery: Fixed namespace support in the xhive:index-paths-values XQuery option.
• XQuery: Fixed a bug where fn:doc-available on an empty library caused a NPE.
• Command line client, Admin client, ant: added support to access a federation through a
federation set (description file or server). The path to such a federation contains a hash. The part
before the hash should point to the set, the part after the hash should navigate to the federation.
When creating a federation bootstrap file, its path should not contain a hash.

• Fixed a recovery issue which might happen if the system crashes at the moment of lucene
segment shrinking.

• Fixed a recovery issue which might cause bootstrap file inconsistency if the system crashes.
• Fixed an issue with read-only federations that caused a NPE when obtaining segment information
for detachable libraries.

Changes in release 10.4

• Kernel optimization. Implemented asynchronous model of bootstrap file (BF) updates which
improved performance of database operations involving BF modifications (e.g. segment creation,
set library to read-only, detach library, attach library) significantly.

• Upgraded to ANTLR 3.5, AspectJ 1.7.2, Fastutil 6.5.2, FOP 1.1, Guava 14.0, ICU4J 50.1.1,
Jersey 1.17, Jetty 8.1.10.v20130312, JLine 2.10, Lucene 4.0.0, SLF4J 1.7.2, Spring 3.2.2.

EMC Documentum xDB Version 10.5 Manual 15

Preface

• Command line client: Added global options --stdout , --stdout-append, --stderr , and
--stderr-append, to allow redirection of standard output and standard error output to a file.

• Command line client: Added options to the backup command to specify included or excluded
segments via a file, by using --include-segments-file or --skip-segments-file
respectively.

• Admin client: Added new functionality: When executing an XPath/XUpdate/XQuery, if the
results are idle, the underlying session will timeout. The user will then be asked whether or not to
re-execute the action, and if not then the results tree will be disabled. The default timeout is set to
5 minutes and can be set through the options dialog.

• Admin client: You can now run/kill merge tasks on Multipath indexes using the context menu
of the Index tab.

• Fixed a concurrency issue with the SegmentAccessInfo cache which may cause NPE while a
front-end is retrieving the information for connection switch.

• Fixed several issues that could result in "incorrect magic number" exceptions.
• Fixed several concurrency issues with the segment cleaner.
• Fixed a data corruption issue related to not removing keys properly from deserialized extended
full-text indexes. (Extended full-text indexes originate from X-Hive/DB 8 and older.)

• Added new functionality which allows consumers to subscribe to monitored statistics in regards
to the cache buffer pool.

• Publishing MBean which displays cache buffer pool statistics.
• Added new method in XhiveLibraryChildIf interface for storing versioned documents,
which enables historical searches on new versioned documents and libraries,
using new xquery functions and new indexing options. To make library children
searchable with the new xhive:collection-*-date xquery functions, they MUST
be created with the new makeVersionable() method’s ’queryable’ parameter on
true. Indexing is provided for by new options XhiveIndexIf.VERSION_INFO and
XhiveExternalIndexConfigurationIf.setStoreVersionInfo(true). The admin client currently only
has functionality for creating/updating indexes with the version info option, it doesn’t allow the
creation of versioned documents with this structure yet.

• XQuery: XQuery 3.0 support.
• XQuery: Added xhive:version-date-property function to retrieve date properties from document
versions. The function returns xs:dateTime values.

• XQuery: Fixed an xquery optimizer bug. An ’order by’ query was optimized by an index join.
The optimizer wrongfully assumed the result of the indexes already ordered.

• XQuery: Each xquery module of a specific namespace can now consist of multiple files.
For this purpose, a new resolveModuleImports function is added to the XQueryResolverIf
and the existing resolveModuleImport has become deprecated. When using abstract class
AbstractXQueryResolver, the old resolveModuleImport is now called for each single import
location. Depending on the existing customer implementation of function resolveModuleImport,
this may result in different behavior of module resolving.

• XQuery: Fixed a multi-path index bug causing wrong score to be calculated in XQueries that
used score but did not order by score.

• Indexes: Implemented support of Lucene IndexReader objects cache. It can significantly
improve the performance of queries which use Lucene MultiPath index.

• Indexes: Fixed an issue with the INCLUDE_DESCENDANTS multi-path
index option that did not distinguish among siblings with the same path even if
ENUMERATE_REPEATING_ELEMENTS was set, causing incorrect content to be indexed.

16 EMC Documentum xDB Version 10.5 Manual

Preface

• Indexes: Fixed the support for full-text logical queries ("LINE contains text ’assemble’ ftand
’draw’") in the multi-path index.

• Indexes: Fixed an issue with index adoption when creating multiple new indexes at once (via
XhiveIndexAdderIf), which could lead to unusable indexes.

• Indexes: Fixed an issue where non-Administrator could not create/delete multi-path indexes.
• Samples: Added a Spring Web MVC sample.
• Samples: Made it clearer how to run the J2EE/Spring samples.

Changes in release 10.3

• Upgraded to Lucene 3.6.0.
• Switched from java.util.logging to SLF4J.
• Consistently referring to "Lucene index" and "External index" as "Multipath index" in API
documentation.

• Indexes: Redesigned Lucene MultiPath Index (MPI) architecture. Now there are no external
files stored outside of xdb segments, instead all lucene files are stored in xdb segments (as blob
objects). The new architecture simplifies MultiPath Index transaction management and as a
result indirectly fixed potential problems of complicated glueing of xDB and old MultiPath
Index transaction models.

• Indexes: Support for fast adoption of B-tree indexes.
• Indexes: Support for super fast adoption of MultiPath indexes.
• Indexes: Full-text indexes can now also index empty elements.
• Indexes: Fixed concurrency issues in XhiveIndexInConstructionIf.
• Indexes: Fixed an issue with updating of value indexes on attribute change when a path value
index is in scope.

• Indexes: Added support for index-level interval and CRON-style scheduling of final merges
for multipath indexes.

• Indexes: Fixed a bug causing incorrect index updates when a path value index was in scope.
• Indexes: Do not index namespace declarations.
• Indexes: Fixed a potential NPE in value comparisons backed by multi-path indexes.
• Indexes: Advanced repair functionality for Lucene MultiPath Index.
• XQuery: fixed a concurrency issue in the parallel query implementation causing the thesaurus
context library to be unusable.

• XQuery: added new function- xhive:glob-documents(). This enables us to use wildcards in order
to retrieve documents. for example: xhive:glob-documents(/Library*) will return all documents
under libraries which start with "Library"

• XQuery: added xhive:full-path() function to retrieve the full path of a library child in the database.
• XQuery: added support for executing XQueries with an undefined context item in
XhivePreparedQueryIf and XhiveXQueryQueryIf.

• XQuery: added XQuery 3.0 features: group by clause, window clause, count clause, allowing
empty (for clause), try/catch expressions, computed namespace constructors, private functions,
switch expressions, named function references, dynamic function call, function tests, inline

EMC Documentum xDB Version 10.5 Manual 17

Preface

function expressions, external variable declaration default values, annotations (no supported
annotation implementations).

• XQuery: added XQuery 3.0 functions: fn:function-name, fn:function-arity, fn:function-lookup.
• XQuery: added collation support for order by clauses
• XQuery: the xquery optimizer now supports ordering by multipath indexes. When using
multipath indexes, order by clauses support features ascending/descending, empty least/greatest
and collations.

• XQuery: added parallel and non-parallel query evaluation support for queries with order by
clauses addressing multiple roots or library sequences

• XQuery: xhive:evaluate supports specifying values for external query variables.
• XQuery: fixed multiple xquery optimizer bugs with negated conditions using not().
• XQuery: fixed wildcard search on a filtered term caused nullpointer exception.
• XQuery: fixed xquery optimizer bug where the result of or-ing 2 ordered index results was
considered ordered.

• XQuery: fixed a number of concurrency issues in the parallel query implementation.
• XQuery: The call function of XhiveXQueryExtensionFunctionIf used as highlighter has one
additional argument containing position information. Depending of the custom implementation of
the highlighter, this change may cause backward compatibility issues.

• XQuery: Fixed an XQuery optimizer bug that caused the xhive:ignore-indexes option to be
ignored in certain cases.

• Samples: New sample DeleteDatabase.java shows how to delete database.
• Samples: New sample MultithreadedOperations.java shows how to perform multithreaded
read/write operations and how to handle exceptions thrown in different threads, specifically
how to handle LockNotGrantedExceptions.

• Samples: New sample CreateMultinodeDatabase.java shows how to create and handle
multi-node databases.

• Samples: Replaced occurrences of ’xhive:fts’ and ’ftcontains’ with ’contains text’ within
XQueries.

• Samples: Implemented correct session handling in samples, ensuring that we commit transactions
at the end of samples unless there is an exception, if so we roll back to transactions.

• Samples: Removed parser.setParameter("namespace-declarations", Boolean.FALSE); since we
encourage users to use a namespace when parsing a document.

• Samples: Replaced old document parsing API with new DOM API. When parsing documents,
use LSParser.parseURI instead of XhiveLibraryIf.parseDocument.

• Samples: When using an LSParser set an error handler to display errors which occur during
parsing.

• Samples: Replacing occurrences of GetAttribute with GetAttributeNS and of SetAttribute with
SetAttributeNS.

• Samples: Replaced old syntax for use of wildcards in XQueries with new one.
• Samples: Replaced old syntax for use of ’And’, ’Or’ ... in XQueries with new one.
• Fixed an issue where the segment may remain in the segment cleaner’s queue after being marked
as unusable.

• Fixed an issue where the segment may remain in the segment cleaner’s queue after being
removed with forceDelete().

18 EMC Documentum xDB Version 10.5 Manual

Preface

• Added retry logic for RPC requests sent to libraries that are bound to more than one node. Now it
will automatically attempt to send the request to next binding node if the previous one fails.

• Fixed a potential deadlock in XhiveLibraryIf.changeBinding(String).
• Fixed a repair tool bug where it may modify read-only indexes.
• Added a new attribute named ’reserved’ for segments. Reserved segments are those whose data
files are not present, however their segment records are kept in the bootstrap file so that those
records are present when users restore a library which occupies them. Currently, only MultiPath
Index segments can be ’reserved’.

• Replaced the JDK writeUTF()/readUTF() calls in socket communication with an implementation
that can send/receive more than 64K bytes.

• Writes on temporary segments are allowed even if all writes are suspended.
• Added support for (optional) FIPS 140-2 encryption.
• The "format-pretty-print" LS Serializer option honors xml:space="preserve".
• Admin client: Fixed: option "Open in browser" could cause Null pointer exception.
• Admin client: Changed "Select active federation" shortcut to ’Ctrl+o’.
• Admin client: New look and feel, including new icons.
• Admin client: Added progress bar functionality.
• Admin client: Added cleaning lucene segment functionality. We will be able to clean segment
from a database level or a library level

• Admin client: Index, Metadata, Properties and Multipath index subpath tables can be sorted.
• Admin client: Consistency check on blob no longer offers check index or check dom node
options.

• Admin client: Removed "Cancel" button from error messages.
• Admin client: Adding more toolbar commands.
• Admin client: Changed administrator user icon.
• Admin client: Errors in database backup dialog no longer cause backup file corruption.
• Admin client: Added check box to "Create segment" dialog in order to apply unlimited storage.
• Admin client: Added check box to "Superuser login" dialog in order to remember previously
entered password.

• Admin client: Connecting to a chained remote client no longer causes a freeze.
• Admin client: When connecting locally to a multi node configuration we no longer have access
to server node management.

• Admin client: When creating a segment only active nodes are available for binding.
• Admin client: Added configurable path mapping functionality to restoration.
• Command line client: Added ’webserver-disable’ option to ’run-server’ command, which when
used stops the webserver from being deployed on server startup.

• Command line client: When running a non primary node and providing a bootstrap file, that file
will be used and not the one in the properties file.

• Command line client: Statistics commands can now be run while server is running in regular
mode

• Command line client: When running consistency check commands, if no check options are
specified then all options will be checked.

EMC Documentum xDB Version 10.5 Manual 19

Preface

• Command line client: When running consistency check commands with options which are not
supported, we no longer fail the check, but print out which options are not supported.

• Command line client: Added statistics-ls command, allowing printout of information on
requested index and all of it’s subindexes.

• Command line client: Added repair-shrinksegments command, This allows us to to shrink index
segments which are not referenced by the record but are still not empty.

• Command line client: Added repair-set-usable command. This allows you to set if a multipath
index is usable. Meaning if the index will be used in a query or not.

• Command line client: When trying to create a segment and failing we will print out that
segment was not created.

• Command line client: Added clean-library command. This allows you to clean lucene segments
on a library level.

• Command line client: Added clean-database command. This allows you to clean lucene
segments on a database level.

• Command line client: You can now return the previous lines in command either by backspace
or the back key.

• Command line client: Each time you run the run-server command, it re-reads the xdb.properties
file. Any changes made to xdb.properties will apply to the new server.

• Command line client: When running the command line client in windows we only cache some
properties in as system variables.

• Command line client: Added tab completion for xDB commands.
• Command line client: Added relative and configurable path mapping functionality to restoration.
• Command line client: In order to enjoy full functionality when running Windows 2008R1
or Windows 7, you must install Microsoft Visual C++ Redistributed packages. Refer to the
Installing section of the manual for specifics.

• Implemented XhiveExternalIndexMBean which is deployed when a primary server is deployed.
This MBean supplies it’s consumer with the notifications on External Index merge opertations,
such as: final/not final, which index is being merged, state of the merge.

• Consistency Checker: Extended ConsistencyCheckerResult API: boolean
isCheckApplicable(DatabaseCheckOptions option), boolean areChecksApplicable()

• Consistency Checker: When performing a check for
CHECK_SEGMENTS_ADMINISTRATION_STRUCTURES options, now checks that size tree
extents are contained within block tree.

• Consistency Checker: When performing a check for
CHECK_SEGMENTS_ADMINISTRATION_STRUCTURES options, if there are extra files in a
segment you will no longer recieve a false positive.

• Federation backup with BACKUP_KEEP_LOG_FILES option is only applicable to standalone
backup.

• New documentation: xDB Administration Guide (xDB_admin_guide.pdf). This Guide is
intended as a convenience for readers who do not need specifics on java software development
with xDB, for example system administrators and end users of xDB-based applications. Omitting
developer-specific information, this Guide has about half as many pages as the xDB manual.

• Fixed a force-recovery issue where it may be unable to identify the correct affected data file(s) if
the redo of a LOGTYPE_NAMEBASE_SPLIT record fails.

• Fixed a concurrency issue with the suspension of disk writes that caused XQuery queries to block
because of waiting Lucene asynchronous tasks.

20 EMC Documentum xDB Version 10.5 Manual

Preface

• Fixed Final Merge issue where log truncation was prevented, causing the disk with the logs
to fill up.

• Increased installation defaults for minimum and maximum memory: 128MB and 256MB.
• Changed request type from byte to short to accommodate more RPC commands.

Changes in release 10.2.4

• Fixed an issue where the segment may remain in the segment cleaner’s queue after being marked
as unusable.

• Fixed an issue where the segment may remain in the segment cleaner’s queue after being
removed with forceDelete().

• Fixed a force-recovery issue where it may be unable to identify the correct affected data file(s) if
the redo of a LOGTYPE_NAMEBASE_SPLIT record fails.

• Indexes: Fixed a bug causing incorrect index updates when a path value index was in scope.
• Indexes: Do not index namespace declarations.
• Indexes: Fixed a potential NPE in value comparisons backed by multi-path indexes.
• XQuery: fixed another xquery optimizer bug with negated conditions using not().

Changes in release 10.2.3

• Optimized the algorithm for collecting the detachable segments information during database
startup.

• Fixed detachable libraries cache problem which could lead to lost updates.

Changes in release 10.2.2

• Revised the cache implementation for segment lists in such a way that the total overhead is
reduced to minimum and will no longer grow linearly with the number of detachable libraries
in the database.

• Fixed an issue where the segment may remain in the segment cleaner’s queue on the original
node after changeBinding() returns.

• XQuery: fixed xquery optimizer bug with negated conditions using not().

Changes in release 10.2.1

• Fixed a data corruption issue caused by segment cleaning operations not done in a serialized
manner. Now each segment has its own separate cleaning session.

EMC Documentum xDB Version 10.5 Manual 21

Preface

• No longer begin transactions on all secondary nodes at the start of a read-only transaction.
• Fixed a false alarm of SEGMENT_BEING_DETACHED in multi-node environment.
• Fixed a restore issue where existing data files of the segments that are excluded from the backup
get overwritten by the empty files created by the restore procedure.

• Ensured that temporary pages are written in a temporary segment whenever possible, to avoid
issues.

• Fixed restore issue which could lead to an unsupported operation exception.
• Fixed bug in creation of sorted indexes which could corrupt the database.
• Fixed a force-recovery issue where log records are mistakenly generated when segments are
marked as unusable.

• Fixed NPE associated with checking the consistency of a server node.
• Fixed xDB log record issue which added zeroes to the end of the log and could, in case of a crash
at that time, stop xDB server from starting up.

• Fixed bug in xDB installer concerning server and webserver listen addresses.
• Fixed bug which prevented some value index updates if a path value index was also in scope.
• Removed two public APIs: XhiveFederationIf.registerReplicator(String, String) and
XhiveFederationIf.unregisterReplicator(String, String) which were never usable.

• Added support for custom loggers in xdb.properties.

Changes in release 10.2

• Upgraded to Lucene 3.4.0.
• Fixed a LUCENE_SNAP_SHOT_TOO_OLD_ERROR in Multi-path index which might cause
query fail.

• Fixed an issue in Multi-path index which might cause search result inconsistent.
• Multi-path indexes now support namespaces and attributes in the sub-path specifications.
• Names in a namespace can be specified also using the Clark {namespace}localpart format
in element name indexes.

• Added the run-server-repair command for running the xDB server in repair mode.
• Added Ant targets for generating OSGi-compatible xDB jars to build.xml.
• Fixed a concurrency issue in the algorithm for determining the database log lower bound for the
active transaction set, which was causing fragmentation of concurrent indexes under certain
conditions.

• Fixed a NPE in xhive:evaluate() when the context item was undefined.
• XQuery: Fixed regression where xqueries with a [..[last()]] predicate caused a nullpointer
exception.

• XQuery: Fixed regression where xqueries with a conditional expression that contains a context
independent subexpression caused a nullpointer exception.

• Added support for IPv6-style bootstrap URLs.
• Added support for XLink 1.1 Recommendation
• Added metadata support by Path indexes

22 EMC Documentum xDB Version 10.5 Manual

Preface

• Added support for separately setting the web administration address (webserver-address).
• Fixed a NPE in xhive:evaluate() when the context item was undefined.
• No longer automatically rollback the transaction if the connection breaks during an RPC call.
Instead, the transaction will remain open and the user will have to decide whether to abort it or
not when receiving an IO_ERROR exception in such case.

• Fixed a potential deadlock (involving the control session and error channels) which might cause
the remote server to hang in extremely rare cases.

• XQuery: added support for the XQuery Full Text weight option (works with multi-path indexes
only).

• XQuery: added thesaurus support for full text xqueries.
• XQuery: added XhiveXQueryFilterIf profile information to Query Plan Profile.
• XQuery: xhive:metadata function can now be called on any context node. If the context node is
a descendant of a document node, the function is executed on the metadata of the document node.

• XQuery: Path value indexes with metadata conditions are used by the xquery optimizer.
• XQuery: Fixed regression where xqueries with a [..[last()]] predicate caused a nullpointer
exception.

• XQuery: Fixed regression where xqueries with a conditional expression that contains a context
independent subexpression caused a nullpointer exception.

• XQuery: Fixed multiple cardinality matching bugs.
• XQuery: A for, let, where, or order by clause containing an updating expression now throws an
exception.

Changes in release 10.1.2

• Fixed an ArrayIndexOutOfBoundsException; ICU collators are not thread save
• Replaced the JDK writeUTF()/readUTF() calls in socket communication with an implementation
that can send/receive more than 64K bytes.

Changes in release 10.1.1

• Fixed a data corruption issue caused by segment cleaning operations not done in a serialized
manner. Now each segment has its own separate cleaning session.

• Fixed a concurrency issue in the algorithm for determining the database log lower bound for the
active transaction set, which was causing fragmentation of concurrent indexes under certain
conditions.

• Support for IPv6-style bootstrap URLs added.
• Support for separately setting the web administration address added (webserver-address).
• Fixed a NPE in xhive:evaluate() when the context item was undefined.
• XQuery: Fixed regression where xqueries with a [..[last()]] predicate caused a nullpointer
exception.

EMC Documentum xDB Version 10.5 Manual 23

Preface

• XQuery: Fixed regression where xqueries with a conditional expression that contains a context
independent subexpression caused a nullpointer exception.

• XQuery: fixed wildcard search on a filtered term caused nullpointer exception.
• No longer begin transactions on all secondary nodes at the start of a read-only transaction.
• Fixed a false alarm of SEGMENT_BEING_DETACHED in multi-node environment.
• Fixed a restore issue where existing data files of the segments that are excluded from the backup
get overwritten by the empty files created by the restore procedure.

• Fixed a force-recovery issue where log records are mistakenly generated when segments are
marked as unusable.

• Removed two public APIs: XhiveFederationIf.registerReplicator(String, String) and
XhiveFederationIf.unregisterReplicator(String, String) which were never usable.

Changes in release 10.1

• Administration: a web based xDB Administrator Client has been introduced. It supplements
the existing administration tools by also allowing various tasks to be performed from within
a web browser. This new web based client is started on port 1280 by default when running
the xDB server.

• Added new XhiveIndexInConstructionIf that allows creating a multi-path index without locking
the library.

• Indexes: Added XhiveIndexListIf.definitionsToXml() and
XhiveIndexListIf.addFromXml(XhiveDocumentIf) to export all index definitions from an
index list, and to create indexes based on such files. Admin client, and Ant task support (see
<batchindexadder/> and <listindexes/>) also added.

• Ant: new task <metadata/>; <librarydelete/> now accepts a "path" attribute for greather
convenience, <listindexes/> and <batchindexadder/> were updated (see note about
XhiveIndexListIf.definitionsToXml()).

• A XhiveSessionIf can now detect a Federation replacement. This may affect existing application
test suites that replace federations and reuse the sessions.

• Increased stability of multi path indexes, which had several small issues fixed.
• Indexes:Significant library children traversal speed up (when using a library id or library name
index). Libraries created before 10.1 need to rebuild their library indexes to take advantage of this.

• Increased speed of iterating over a XhiveNodeListIf
• XQuery: simple value indexes will now be used for path expressions without comparisons.
• XQuery: index supported order by expressions will now be correctly optimized when used
multiple times. Also available in the Admin client.

• XQuery: new utility com.xhive.query.interfaces.XQueryPrettyPrinter to indent and highlight
XQuery statements.

• XQuery: update queries on versioned documents now throw exception.
• XQuery: added extension function xhive:document-id to retrieve the id of a document.
• When restoring backups that contain multi-path indexes, if a PathMapper is used, it will also be
used to remap the location of the multi-path indexes.

24 EMC Documentum xDB Version 10.5 Manual

Preface

• Known issue: When indexing sub-paths (XhiveSubPathIf) with type DATE_TIME, timezones
will be ignored in range searches. So for best results we suggest normalizing the date-time
data to a single time zone.

• Known issue: Both XhiveAttrIf and XhiveElementIf do not currently implement
ItemPSVI.getSchemaValue()

• Scoring in multi-path indexes is optimized for very large indexes and therefore we save memory
by not storing text length for score normalization. While we (currently) don’t offer any option to
turn this on, you can effectively turn it back on by setting the score-boost of all sub-paths to the
same value (the value must different than the default). So by setting the boost of all sub-paths
to 1.01 you can have better normalization in all your scores.

• Tools: many small fixes to XhiveFtpServer for commands such as store, rmdir, rename and list.
• Tools:the xdb command line: "xdb consistency-check" has a new option "deadobjects"
• Tools:the xdb command line: "xdb backup" has a new option "include-segments"
• Documentation:improved xDB manual structure, and minor content changes in the introductory
chapters

• Fixed multi-path index recovery issue which might result in DEAD_OBJECT exception
• XQuery: parallel query evaluation support for queries addressing multiple roots
• Added support for new weighted score boosting model through XhiveWeightedFreshnessBoostIf
interface

• Added support for full-text fuzzy search option
• Fixed segment cleaner thread starvation problem in concurrent environment
• Fixed SERVER_TERMINATED error caused by segment cleaner thread writing to READ_ONLY
segments

• Fixed a data file handling issue which could cause server to hang while being shut down if
some data files are missing

• Fixed NPE associated with layered import of modules.
• Increased stability of running xDB in multiple nodes
• Increased stability of xDB’s client server protocol
• Upgraded the included Xerces-J library to version 2.11.0. Changes in this version affect the
XMLResourceResolver: the value of XMLResourceResolver.getLiteralSystemId() is now equal
to XMLResourceResolver.getExpandedSystemId().

• Hot backups taken on xDB 10.0 (or less) are not compatible with xDB 10.1. If you want to restore
database/federation from such a backup you should do that using xDB 10.0 then cleanly shutdown
server and upgrade to xDB 10.1. Another option is to create backups again on xDB 10.1.

Changes in release 10.0.2

• Fixed a concurrency issue in the algorithm for determining the database log lower bound for the
active transaction set, which was causing fragmentation of concurrent indexes under certain
conditions.

• Support for IPv6-style bootstrap URLs added.

EMC Documentum xDB Version 10.5 Manual 25

Preface

• Tools:Ant tasks for creating new indexes (including <batchindexadder/>) have a new attribute
"exists" to specify what to in case of name collision. Notice that batchindexadder used to fail by
default if a name collision happened, and now it will "skip" by default.

• XQuery: update queries on versioned documents now throw exception.
• XQuery: Fixed bug fulltext xquery with scoring can throw exception when using index.
• XQuery: Fixed regression where full-text queries against path-value indexes would search for
tokens as a prefix and not as an exact match.

• XQuery: Known Issue: Path value indexes using multiple keys where one key is full-text, such
as "a[b + c<FULL_TEXT::>]", will not use the index to resolve queries if the query does not
specify the value of "b". Example "a[b and c contains text ’foo’]". This is a regression from xDB
9.X. In xDB 10.0.1 this query would trigger a NullPointerException.

• Fixed NPE associated with layered import of modules.
• Fixed a performance issue in changing the state of or backing up a library with huge amount of
documents beneath it.

• Fixed a bug where a secondary node might attempt to connect to itself when it should connect to
the primary to report corrupt segments.

Changes in release 10.0.1

• XQuery: fix an issue with incorrect query results when intersecting index lookup results where
individual nodes are subject to different namebases.

• Avoid startup time NODE_NAME_UNKNOWN exception caused by a previous incomplete
upgrade

• Ant: fixed Ant task <multipathindex /> to honor the documented default values for options
"lowercase" and "stopwords".

• Fix: the storage location of multipath indexes files (which are stored outside of the database) can
now also be re-mapped through PathMapper.

• Fix several blacklist management issues which might result in DEAD_OBJECT or
ArrayIndexOutOfBoundsException.

• Fixed BufferOverflowException associated with multi-path index backup.
• Fixed 2 issues associated with cross index merge 1. when adding subpath configurations after
creating the multi-path index. 2. if the source index is an optimized index(does not contain
non-final index).

• Fixed a memory leak associated with XhiveNodeIf.getChildNodes().
• Fixed the ’@since’ version of XhiveFederationIf.shutdown(String, String[]) in javadoc.
• Documented the behavior of XhiveFederationFactoryIf.restoreLibrary(ReadableByteChannel,
Collection<String>, String, PathMapper, XhiveRestoreCallbackIf) when the second parameter is
null.

• Read-only segments will now be temporarily made writable (if allowed by the file system) in case
that the data on them needs to be upgraded from xDB 9 to xDB 10 during startup.

• Fix several sub-connection management issues which might result in
SWITCH_FROM_NON_PRIMARY_CONNECTION and/or NPE.

• Fixed a memory leak associated with parallel query execution.

26 EMC Documentum xDB Version 10.5 Manual

Preface

• Fixed NPE associated with query subresults merging.
• Fixed NPE associated with opening read-only federation.
• XQuery: fix an issue with incorrect query results when intersecting index lookup results where
individual nodes are subject to different namebases.

• Tools: fixed an issue with the xDB installer and launcher script on Solaris.
• Tools: documented usage of xDB together with Maven 2.
• Spring: integrated the xDB Spring support into the main distribution. See the manual section
"xDB and Spring" for details.

• Administration: documented and unified use of logging within xDB.
• XQuery: various settings from query now also apply to queries run in xhive:evaluate()

Changes in release 10.0.0

• An xDB federation can now be distributed over multiple server machines. See manual chapter
"Configuring Multiple Backend Servers".

• There is an interface to find information about an existing backup file. See
XhiveFederationFactoryIf.getBackupInfo.

• Added possibility of compressing Text and CDATASection of imported nodes. See
XhiveNodeCallBackIf for details.

• Add new method XhiveLSParserIf.parseIntoDocument to parse into an existing document. This
method does not have all the features of LSParser.parseWithContext, but is more efficient
in time and memory use.

• Databases can now be created with a concurrent root library. See
XhiveFederationIf.DatabaseOption.CONCURRENT_ROOT.

• An xDB instance can now be enlisted as a resource with an XA transaction manager. See
XhiveDriverIf.getXAResource.

• All new namebases are now concurrent. The options
XhiveLibraryIf.CONCURRENT_NAMEBASE and
XhiveLibraryIf.DOCUMENTS_DO_NOT_LOCK_WITH_PARENT are now ignored and
have been deprecated.

• Added RPC tracing support when running in client/server mode. See
XhiveSessionIf.enableRPCTracing.

• For debugging purposes, a driver can now be given a name using XhiveDriverIf.setName.
• Restore operations can now optionally overwrite existing files. See XhiveRestoreCallbackIf.
• Changed hash code definition for XhiveXQueryValueIf. Atomic number values will now map to
the same hash code even if they are not of the same type (xs:double, xs:decimal, xs:integer etc.).
This means that they will be considered equal in hashmaps and similar containers.

• Index lookups will now be done with values in sorted order to enhance cache use. Predicate
evaluation with equality comparisons on very large sets is now faster.

• Added a cache of search string tokens. It avoids retokenizing the same string if it is used twice
within a single query.

EMC Documentum xDB Version 10.5 Manual 27

Preface

• For performance reasons, all index lookups from XQuery will be performed ascending unless
an order by expression explicitly sorts the result in the other order. This may cause different
result orders for queries using "unordered {}".

• New Ant tasks: <metadata/>, <checkdatabase/>, <checkfederation/>, <checknode/>,
<checklibrary/>, <multipathindex/>, and <xquery/>.

• Added new check-federation, check-database, check-node and check-library command-line tools.
• The admin client now shows a paged view for libraries with many children. This avoids
OutOfMemoryErrors in the client.

• Added database/federation consistency checker interfaces
XhiveConsistencyCheckerIf/XhiveFederationConsistencyCheckerIf. They allows you to check
administrative and data pages consistency.

• Added support for consistency checker in admin client.
• Integrated J2ee module into xDB. Added samples how to use module from EJB and spring
frameworks.

• Added support for times filter of XQFT spec. available at
http://www.w3.org/TR/xpath-full-text-10/#doc-xquery-FTTimes

• Added support for ’at start/at end/entire content’ positional filters of XQFT spec. available at
http://www.w3.org/TR/xpath-full-text-10/#ftcontent

• Implemented XQFT feature parity for all full-text indexes.
• If a full-text index analyzer returns multiple tokens with the same position, the tokens will be
joined in an OR query.

• Marked XhiveCCIndexIf as deprecated to clearly discourage its usage.
• New index type: multi-path indexes. See the manual for more information.
• XQuery: Added an API XhiveScoreBoostFactorIf to boost library child score.
• XQuery: fixed an ArrayIndexOutOfBoundsException with order by expressions and multiple
for clauses

• XQuery: added optimization for conditions that check multiple children using starts-with in a
some ... satisfies loop, e.g. for $x in ...
where some $y in $x/author/last satisfies starts-with($y, ’Smi’)
return $x
Such conditions can now use index scans.

• XQuery: extended support for libraries. XQuerys can now use libraries in sequences ("(doc(’a’),
doc(’b’))//foo") or variables bound by declare variable or let statements, and path expressions
will still pick up indexes at the library level.

• XQuery: order by expressions are now supported across multiple libraries or documents. E.g.
for $x in (doc(’a’), doc(’b’))//test[@price]
order by $x/@price
return $x
will run as an index supported order by if there is an index on @price on ’a’ and ’b’.

• XQuery: Access to variables using positional predicates (e.g. $variable[5]) is now handled
more efficiently.

• XQuery: Added an API to get the query plan for an XQuery, either as a static
description or including profiling information after execution. See JavaDocs for
XhiveXQueryQueryIf.getQueryPlan() and XhiveXQueryResultIf.getQueryPlan().

• XQuery: relaxed the Update Statement Placement rules by default, enable strict checking
through XhiveXQueryCompilerIf.setStrictUpdateExpressions.

28 EMC Documentum xDB Version 10.5 Manual

Preface

• XQuery: replace value of $node with $value will now always convert $value to a single
string instead of appending nodes - this reflects a change in the specification. Also applies to
xhive:replace-value-of WARNING: this might break existing XQuery code!

• XQuery: Java module functions can now also declare parameters as XhiveElementIf, XhiveAttrIf
or XhiveDocumentIf, booleans, and java.util.Calendar.

• The toString() and toXml() methods of DOM nodes will now serialize the XML fragment with
namespace support, i.e. missing declarations will be inserted where necessary.

• XQuery: errors triggered using the function fn:error($name as xs:QName?,
$message as xs:string, $values as item()*) will now cause the exception
com.xhive.error.xquery.XhiveXQueryUserException. This exception class provides accessors for
the QName and values list.

• XQuery: fixed a large number of issues with the regular expression engine. Changed
exception subtype for illegal replacement strings from XhiveXQueryParseException to
XhiveXQueryErrorException.

• Moved configuration file xdb.properties to the subdirectory conf, adjusted it to be a proper Java
properties file. This will be done automatically by the Windows installer.

• Server log output will be written to log/server-out.log and log/server-err.log instead of the bin
directory.

• New implementation of parallel queries using lazy evaluation strategy.
• New samples: CreateMultiPathIndex, LibrariesAsVariable and BoostLibraryScore.
• Fix: updates of indexes indexing attributes of nodes without children could fail on some cases.
• Fix: problem with wildcard queries evaluation that could crash the query, or that could cause a
given node id to be returned more than once from the index.

• Fix: memory leak when using XQFT’s window and distance operators.
• Tools: The xdb xquery command can now read the XQuery from a file, using the –file option.
See xdb help xquery for details.

• XQuery: adjusted the function signature of fn:put() to always require the second argument $uri.
Use the empty string to store documents without a name.

• Known issue: Multi path indexes are implemented as external indexes, and the backup restore
operation of these indexes do not make use of PathMapper.

Changes in release 9.0.10

• Introduce a new exception type ’SEGMENT_BEING_DETACHED’ which indicates that a
read-only transaction is attempting to access a segment which was detached by a yet-to-commit
transaction when it began.

• Fix a problem with deadlock detection algorithm which may unnecessarily abort transactions
when some locks are already downgraded or released.

• Fix a problem where new read-only transactions could still be added to the transaction table
while suspended.

• Fix a problem where potential deadlock may occur when a detaching transaction is trying to
suspend new read-only transactions.

EMC Documentum xDB Version 10.5 Manual 29

Preface

Changes in release 9.0.9

• XQuery: fix an issue with incorrect query results when intersecting index lookup results where
individual nodes are subject to different namebases.

• Tools: fix an issue with the xdb and setup.sh scripts on Solaris.

Changes in release 9.0.8

• Fix: do not ask LogManager accessing pages in read only transactions.

Changes in release 9.0.7

• XQuery: fix a NullPointerException with document filters that (correctly according to Javadoc)
set individual items to null in the filtered sequence.

Changes in release 9.0.6

• Fix recovery problem when attempting redo of a change of segment properties on a segment that
was already deleted.

• Added supportprefixwildcard option to <fulltextmetadata/> Ant task.

Changes in release 9.0.5

• Fix problem that caused obsolete log files on replicators to be retained.
• Empty elements and metadata fields are now correctly flagged as errors when an attempt is
made to add them to a numeric index.

• XQuery: fixed a NullPointerException in the built-in XQuery function fn:error($qname,
$message, $items) triggered when the $items parameter was present but the empty sequence.

• XQuery: fixed a ClassCastException triggered when joining results from an index optimized
order by lookup over multiple keys with an index lookup over a single key.

Changes in release 9.0.4

• Fix versioning of entity references with unresolved values, and of different entity references
with the identical value.

30 EMC Documentum xDB Version 10.5 Manual

Preface

Changes in release 9.0.3

• XQuery: Fix a stack overflow triggered by index lookups with conditions like "(a or b) and (c or
d)" where both sides of the conjunction could be index optimized.

• XQuery: fixed a NullPointerException when using an XhiveXQueryResolverIf and calling
collection() without parameters

Changes in release 9.0.2

• Fix rare data corruption problem that could occur when a document with entries in a concurrent
index was removed in two threads simultaneously.

• XQuery: Added support to convert values of type java.util.Date, java.util.Calendar,
java.sql.(Date|Timestamp|Time) into XQuery values when used in variables or external functions.

• XQuery: added asQName() and asCalendar() methods on XhiveXQueryValueIf
• Command line: fixed the unintended behaviour of "xdb import" to always create the complete path
of an imported file relative to the current working directory in the database. Libraries will now
only be created when importing directories, and only for paths relative to the imported directory.

• XQuery: added com.xhive.query.interfaces.XQueryResolverIf. Set a resolver on an
XhiveXQueryCompilerIf or on an XhiveXQueryQueryIf to control module, schema, and
document resolution. samples.manual.XQueryResolver shows how to use the interface.

Changes in release 9.0.1

• If you are upgrading an existing federation from version 9.0.0 (only) please read
repair_searchable.txt first.

• Fixed Path index updates regression. Updating attribute values in path indexes would fail to
actually update the index in some circumstances. Path indexes which had attribute components
should be rebuilt to assure consistency.

• Fixed XA transactions recovery bug which happens during distributed transaction recovery
managed by global transaction manager.

• The method XhivePrepardeQueryIf#getExternalFunctionNames() will now also return the names
of external functions from imported modules.

• Fixed XhivePreparedQueryIf#getExternalVariableNames() to properly return the external
variable names.

• Fixed failonerror usage with createdatabase task. Fixed behavior of overwrite="newer"
in parse/upload tasks. Also improved the options support for many Ant tasks, and fixed
documentation issues with the adduser and addgroup tasks.

• XQuery: fixed two issues with positional variables in for clauses where positional variables
would get a wrong value or cause an ArrayIndexOutOfBoundsException

EMC Documentum xDB Version 10.5 Manual 31

Preface

• Command line: added the cd and mv commands to the command line client
• XQuery: fixed an issue where tail callable functions might produce values in the wrong order if
the same call site would be evaluated in parallel (e.g. through mutual recursion).

Changes in release 9.0.0

• Samples have been added to show new functionality.
• Product has been renamed to EMC Documentum xDB, all references in API doc to xDB version
8.0 (and before) should be read as X-Hive/DB 8 (and before).

• The installation layout has significantly changed. It is best to perform a complete deinstallation
and reinstallation. In particular, the Windows service is now called ’xdb-server’, and all settings
have been moved to ’xdb.properties’ in the installation home directory. On Unix an installation
path is no longer needed as it will install xDB in the directory the installation packages is unziped.

• Non-concurrent indexes can now be created as compressed indexes. This can reduce disk usage,
particularly for full text indexes.

• The W3C Element Traversal Specification has been implemented.
• Add new LSParser and LSSerializer option "xhive-insert-xmlbase", to add xml:base attributes on
the top level elements of external parsed entities.

• Added new event types in XhiveDriverIf.XhiveDriverObserverIf to allow notification of loss
and restore of connection to server.

• Added new method to XhiveXQueryPolicyIf to allow control over schema imports.
• Add new XQuery extension function xhive:highlight to allow userdefined highlighting function
to get tokens searched for.

• Add new API XhiveFtsUtilIf.compilePattern to match patterns with full text search wildcards
against terms.

• The included version of ICU4J has been upgraded to 4.0.
• The included version of Lucene has been upgraded to 2.4.0.
• The included version of XML Beans has been upgraded to 2.4.0.
• The included version of Apache FOP has been upgraded to 0.95.
• The included ant.jar has been upgraded to version 1.7.1.
• The Ant task <upload/> originally accepted an attribute parameter "xmlextentions", which
misspells the word ’extensions’. This task has been modified to accept a "xmlextensions". The
previous misspelled form is now unsupported.

• Adjusted the XQuery Update spec implementation to the current W3C Candidate
Recommendation, available at: http://www.w3.org/TR/2008/CR-xquery-update-10-20080801/

• Implemented the rules for XQuery Update expression compatibility from
http://www.w3.org/TR/xqupdate/#id-upd-apply-updates This disallows duplicate renames,
replaces, and puts of elements/docs within one query. This might break some existing
applications, in particular those using "move" operations by first deleting a node and then
inserting it somewhere else, if the nodes are covered by a unique index. Please perform the
move in two XQuery statements, or use the new functions xhive:move($target, $sources) (insert
into) and xhive:move($target, $anchor, $sources) (insert before $anchor). Also see the manual
section "XQuery Update Syntax".

32 EMC Documentum xDB Version 10.5 Manual

Preface

• Implemented an interactive shell for the database. The shell can be started using the executable
’xhive’ or ’xhive.bat’ respectively. It replaces the older command line tools (like XHBackup),
which are still in place for backwards compatibility. All previous commands are supported, plus
new commands to manage database contents (list, remove, import, XQuery, ...). See ’xhive help’
or the Administering xDB section in the manual for more details.

• XhiveXQueryCompilerIf has been extended to support setting default values for certain XQuery
prolog settings, including external functions, imported modules, variables, options, etc. See the
JavaDocs for more details.

• The default revalidation mode has been set to ’skip’ (used to be lax) for performance reasons. The
setting can be overridden within the query using ’declare revalidation (skip|lax|strict)’ or using
XhiveXQueryCompilerIf.setRevalidationMode(...).

• Fixed a bug where specifying the Unicode codepoint collation would rather use a Collation for
the current system locale instead of the correct codepoint comparison method.

• Implemented XQuery Update copy/modify expressions
• Changed xhive:insert-document() and fn:put() to overwrite documents instead of giving an error
• Deprecated XhiveXQueryValueException, catch XhiveException instead. This exception
used to signal the error that a full text conjunction setting had an erroneous value in
’xhive:fts-implicit-conjunction’.

• The XHServer tool now registers an instance of XhiveFederationMBean with the platform
MBean server.

• Libraries (XhiveLibraryIf) can now be used as external values within XQuery, as external
variables (via setVariable(...)), when returned from extension functions, Java modules, etc.

• Implemented compression of text and CDATA nodes. Added API which allows to specify which
nodes to compress.

• Implemented recovery of XA transactions after database crash.
• Partially implemented XQuery Full Text Specification, available at:
http://www.w3.org/TR/xpath-full-text-10/ The list of supported features include:
logical full-text operators, wildcard option, anyall options, positional filters and score variables.

• Support for scoring has been added to our Full Text search engine. The user may influence the
score by changing the Similarity measure used to compile the score. See the manual for details.

• Added optimization of ’order by $score’ clause: when the result is coming from index pre-ordered
by score then order by clause does not perform sort operation. The optimization is implemented
for parallel execution of full-text query as well.

• Added new debug option, optimizer-debug, to help understand why the optimizer chose (or did
not choose) a particular query plan. Added a new tab to the Admin client for the optimizer-debug
output, as the output can be very verbose we don’t want it to interfere with the output from any
other debug option.

• Introduction of detachable libraries, detachable libraries can be detached and attached from the
database. See the manual for details.

• Detachable libraries can be backed up and restored individually. See the manual for details.
• Fixed a potential security issue with Java module imports and XhiveXQuerySecurityPolicyIf. If
the security policy was only set after parsing the query, Java access would not be prevented.

• Fixed a bug in the matching of Phrase queries using wildcards in one of the terms.
• Disallowed rebuild the "Library ID index" of concurrent libraries, as this would lead to losing
track of the library children.

EMC Documentum xDB Version 10.5 Manual 33

Preface

Known issues and limitations
The xDB manual usually discusses specific issues and limitations inside relevant chapters, topics
or sections, including:

• Performance: using multiple disks, page 77

• Multipath index limitations, page 160

• XQuery Full-text search limitations, page 195

• XQuery using java: function name limitations, page 219

• XQuery parallel query limitations, page 216

• Multi-node considerations, page 302

The list below presents additional known issues and limitations that may affect your use of the
product, and are not discussed elsewhere in the xDB manual.

• Restore: if the bootstrap contains Windows file paths like
C:\...\data\xhivedb-default-0.XhiveDatabase.DB, federation restore of the bootstrap file goes
wrong in *nix environments as the paths are not interpreted correctly (XDB-2626).

• The xDB installation process copies the manual files (PDF and HTML versions) from the
distribution to a location where hyperlinks to java samples and javadoc should work after
succesful installation. If used from a different location, these links may not work (XDB-3315).

• The ’statistics-ls’ command doesn’t work on a multinode environment (XDB-3478).

34 EMC Documentum xDB Version 10.5 Manual

Chapter 1

Quick Start

This chapter contains the following topics:

• Getting a quick start with xDB

Getting a quick start with xDB

For developers who want to get up and running quickly with this version of xDB, this section briefly
describes the minimal necessary steps: installation, creating your first database, and running a sample
command to verify the installation. For more detailed information, see Installing xDB, page 49, and
the readme.txt file of the distribution.

Installing and running xDB requires the Sun JDK 7 or a fully compatible Java Virtual Machine (JVM).

1. Install xDB.
• On Windows, you must be logged on with Windows administrator access privileges. The
Windows installer can upgrade an existing xDB version 9.0 or later (see Upgrading xDB
on Windows, page 57). If you have a previous version of xDB running, either use different
directories and port numbers for the new installation, or uninstall the previous version.
Run the xdb_setup.exe file and follow the instructions on the screen.

• On UNIX, you can install xDB under any account. If you have a previous version of xDB
running, either use different directories and port numbers for the new installation, or uninstall
the previous version.
Extract the distribution and run sh setup.sh and follow the instructions on the screen.
UNIX installation requires some post-installation steps (see Installing xDB on a UNIX platform).

2. The use the code samples that the xDB manual refers to, create a demo database as follows:
a. Start the Admin Client.

You can start it with the xdb admin command in the bin subdirectory of the xDB installation.
On Windows, you can also launch it from the Windows start menu.

b. Select menu option Database > Create database to create a database.
c. Enter united_nations as database name, the superuser password as entered during xDB

installation, and administrator password northsea. The other fields should be left unchanged.
d. After creating the database, you can close the Admin Client, unless you would like to use it

later to view the results of running code samples, or to perform other actions.
3. Run a sample.

a. Open a command prompt and navigate to the bin subdirectory of the xDB installation.

EMC Documentum xDB Version 10.5 Manual 35

Quick Start

b. Use the xhive-ant command to insert two documents into the database:

xhive-ant run-sample -Dname=manual.StoreDocuments

If the command runs successfully, a message appears stating the number of documents stored
in the database.

Related links

Pre-installation requirements

Installing xDB on a Windows platform

Installing xDB on a UNIX platform

36 EMC Documentum xDB Version 10.5 Manual

Chapter 2

Introduction

This chapter contains the following topics:

• xDB Overview
• General features
• Linking documents with XLink
• Versioning and branching
• Administration tools
• Logical architecture
• Internal structure: databases, segments, files and pages
• Detachable libraries
• Managing users and groups

xDB Overview

xDB stores XML documents in an integrated, highly scalable, high-performance, object-oriented
database. It exposes the database and its contents to software developers through an application
programming interface (API). xDB is pure Java. Using xDB, software developers can build custom
XML content management solutions that offer high-speed storage and manipulation of very large
quantities of XML documents, and are fully tailored to the exact requirements of any given application.

Typically, software developers embed xDB JAR files within a calling application, which usually is a
web application running within a Java application server. Through the xDB Application Progamming
Interfaces (APIs), developers can create front-end applications that concurrently call their backend
xDB server to perform database sessions, retrieve XML documents, store XML documents, execute
xQueries, etc.

General features

EMC Documentum xDB Version 10.5 Manual 37

Introduction

The page server

A backend server for an application is called a page server, because its purpose is to transfer data pages
to front-end applications (also called client applications), which locally perform operations on the data.

In environments where all database accesses are done from a single application server, performance is
usually best when the page server runs in the same JVM as the server application.

A backend server that combines being a page server with other tasks is called an internal server.

A page server that has no other purpose than being a server is called a dedicated server. A dedicated
server, with client/server communication over TCP/IP, can offer better scalability than an internal
server. In a simple internal server setup, one single web application can access the data on the page
server directly, and if other web applications also need access to the data, the first web application
can run an internal server for them. The larger the scale, the complexity and the number of different
frontend web applications that share a single page server, the more likely it becomes that a dedicated
server is preferable.

Clients and servers

The optimum numbers of clients and page servers will depend on the characteristics of the solution,
including how data intensive it is. As the numbers of data retrievals or ingestions increase, more
front-end application servers and/or more backend server nodes may become advisable. XQuery
operations retrieve data pages from server to client side, and then process the query on the client side.
So, query-intensive applications may benefit from additional servers both at client side and at server
side. Ingestion operations parse XML documents on the client side and then pass newly created
data pages to server side. So, in case of a high ingestion workload, client and server sides may both
benefit from additional servers.

If multiple backend servers are required, there is a choice between two different features:

• Replication dynamically maintains one or more complete copies of an entire ’master’ data set on
one or more separate page servers. These copies are called replicas. Read-only transactions and
online backups can be offloaded to the replicas to distribute query load. For more information, see
Replicating Federations, page 289.

• Multi-node distributes a data set over multiple node servers, using Detachable libraries, page 46. It
allows the application workload to be spread over multiple backend servers. For more information,
see Configuring Multiple Backend Servers, page 297.

Supported standards

Implemented and extended recommendations of the World Wide Web Consortium (W3C) for querying,
retrieving, manipulating, and writing XML documents include:

• Document Object Model (DOM)

38 EMC Documentum xDB Version 10.5 Manual

http://www.w3.org/DOM/

Introduction

– Level 1
– Level 2 (Core and Traversal)
– Level 3 (Core and Load/Save)

• The eXtensible Stylesheet Language - Transformation (XSLT)
• XQuery
• XPath
• XLink
• XPointer

Implementation of an extended DOM level 3 interface provides for manipulating content, structure,
and style of documents. All DOM level 3 functionality is supported, including functions for retrieval,
modification and navigation within XML documents.

Since DOM level 3 does not support XML collections for handling more than one document, extended
API functions provide support for processing multiple documents simultaneously. Documents are
collected in libraries, which are implemented as DOM nodes. You can store libraries within other
libraries in the same way that you store documents within libraries. All operations on documents
(including XQuery queries) can also be performed on libraries.

A transformation engine that uses XSLT, a language for transforming XML documents into other
XML documents, makes it possible to transform XML into such formats as HTML or WML. You
can also publish to the PDF format.

XML Query Language (XQuery) has a string syntax that can address any type of information in an
XML document. XQuery can make selections based on conditions and construct new structures based
on queried information. The XQuery query engine implementation supports XPath and XPointer
queries. For more information, see the chapter about XQuery, page 173.

XLink is a W3C recommendation that enables links between XML documents. For more information,
see Linking documents with XLink, page 40.

Indexing

Various different types of indexes enable faster data access and increase the performance and
scalability of applications. For more information, see the chapter about Indexes, page 150.

Non-XML import and BLOB storage

Data can be imported and exported. The included SQL Loader uses Java Database Connectivity
(JDBC) to import data from relational databases, sequential files and other non-XML sources. An
integrated version of the Xerces parser imports XML documents.

In addition to XML documents, a database can store image files, sound files, Microsoft Office files,
and other file formats as Binary Large Objects (BLOBs). Storing BLOBs and XML documents in the
same database allows managing all resources for a specific project or product in one uniform way.

EMC Documentum xDB Version 10.5 Manual 39

http://www.w3.org/Style/XSL/
http://www.w3.org/TR/XQuery
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink11/
http://www.w3.org/TR/xptr

Introduction

Session and transaction control

A transaction mechanism ensures that changes and updates to the database are completed harmoniously
across the system. If a transaction conflicts with other transactions, all transactions that take place
within one session can be committed or rolled back.

The transaction mechanism complies with the ACID database properties:

• Atomicity: either all actions in a transaction succeed and are made persistent in the database, or
none of the actions succeed.

• Consistency: the view of a database within a transaction is coherent: all read actions on a particular
part of the database return the same value.

• Isolation: changes that are made in one transaction are not visible in concurrent transactions
until the transaction is committed.

• Durability: when data is modified and the transaction succeeds, the data is certain to be written
to the disk.

Acces control

User access control is provided in the form of authorization and security support for managing users
and groups, page 47.

Linking documents with XLink
XLink enables simple links between XML documents, equivalent to <a href> links in HTML, as well
as more complex links, known as extended links. For example, extended links can be used to create
one-to-many links, and to add semantic meaning to links. For more information about XLink, see the
W3C XML Linking Language (XLink) documentation.

All XLink information is stored in attributes. The xlink:show attribute describes how the content is
displayed, while the xlink:type attribute describes the type of the XLink. The xlink:href attribute
defines the link target and can be defined using URIs and XPointer. For example,
xlink:href="/UN Charter/UN Charter - Chapter 4#xpointer(/chapter[1]/title[1])"

defines the first title of the first chapter of the UN Charter - Chapter 4 document in the UN Charter
library as the link target.

Versioning and branching

40 EMC Documentum xDB Version 10.5 Manual

http://www.w3.org/TR/xlink11/

Introduction

Versioning

For applications that need to store multiple versions of documents and BLOBs, xDB offers linear
versioning with branches. Storing multiple document versions allows users to track the changes
in a document and restore older versions. The latest version of a versioned document is used for
retrieval, traversal, querying and indexing. Earlier versions are only searchable if they were created
with a ’queryable’ option.

Branching

A version branch is a sequence of versions which has been separated from the main sequence of
versions. Branches are typically used when multiple users are working in parallel on the same
documents. If a document is checked in and the version has one or more successors, xDB automatically
creates another version branch.

In the example shown below, two users check out document version 1.3 from the head branch. User A
modifies the document, then checks in the document and xDB creates version 1.4. When user B checks
in, the head branch already contains version 1.4 of the document and xDB automatically creates
another branch under the 1.3 branch.

Figure 1 Branching documents

xDB automatically numbers versions and branches, as follows:

• Versions, for example 1.1, 1.2, 1.3, ...

• Branches, for example 1.x.2.1, 1.x.4.1, 1.x.6.1, ...

• Subbranches, for example 1.x.y.1: 1.x.y.1.2.1, 1.x.y.1.4.1, 1.x.y.1.6.1, ...

Administration tools
The xDB distribution includes a number of helfpful tools, primarily intended for administrative use in
a development environment.

EMC Documentum xDB Version 10.5 Manual 41

Introduction

The Admin Client (also known as administration client or administration tool) offers a database
explorer that displays database structure and content, and provides access to a wide range of
management functions, such as backup and restore, user authorization, and checking the physical and
logical consistency of a database or federation. For more information, refer to Admin Client, page 227.

Some key administrative database functions are provided by the new web client, page 246.

Administrative tasks, including backup and restore, can be performed from the operating system
command line, terminals or scripting languages using Command-line tools, page 246.

Some administrative features are also accessible through xDB Ant tasks.

Logical architecture

A page server works with a federation, which contains one or more databases. Databases can hold data
of various kinds, including XML documents, user accounts and other database objects, page 43.

Federation and database

A federation is a container for related databases, to which it provides a single server connection. A
federation is associated with a superuser account, page 42, and a specific location for transaction log
files, page 43. Applications can connect to the federation’s database driver either directly or remotely.
When a calling application creates a driver, it specifies the required federation or page server by
means of a bootstrap, page 69.

If multiple applications need access to the same federation, one application will access the federation
directly, and act as a server for the other applications.

A federation can contain as many databases as needed.

Federations and databases can be created and managed manually with the Admin Client, page 227, or
with the Command-line client, page 246.

Creating a new database requires the password of the superuser account, the password of the
administrator account and the name of the database you want to create.

Note: xDB database names, user names, and passwords are case sensitive. For example, Xhive
and XHIVE are treated as different database names. Passwords must be alphanumeric and from
3 through 8 characters long.

Superuser
A federation has one superuser account with the user name superuser. The superuser account for the
default federation is created during the installation process, and enables initial database configuration.
The superuser can create and delete databases, and perform administrative operations such as setting
the license key and performing backups.

The superuser cannot access regular data such as libraries and documents.

42 EMC Documentum xDB Version 10.5 Manual

Introduction

Transaction log files

Write Ahead Logging (WAL) is used to ensure that federation data can be recovered. Data is committed
to the write ahead transaction log before it is written to the actual database files.

Transaction log files are numbered sequentially, and written to the federation’s log directory, which
was specified when the federation was created.

To protect against corruption it is possible to configure the system to keep multiple copies of
transaction log files. For more information refer to Duplicated transaction log files, page 275.

By default, transaction log files that are no longer needed for recovery are automatically deleted. To
allow incremental backups, the keep-log-files option of the federation must be turned on, so that
obsolete log files are only deleted after a backup.
Creating and restoring backups

Running incremental backups

Restoring lost data from log files

Database objects

A federation can contain one or more databases. A database can contain various types of objects,
including users, user groups, libraries, documents, indexes, catalogs and BLOBs.

Figure 2 Database objects

EMC Documentum xDB Version 10.5 Manual 43

Introduction

Users and user groups

When creating a database, the superuser must create a user account for the database administrator. The
database administrator can create user accounts for all other database users. Every user has a database
user account with a unique user name, with a password for access control. Each user account is
assigned a set of permissions that specify the level of access the user has to the database.

A group is an object in the database that contains one or more users. Groups can be used to assign the
same access rights and privileges to multiple users.

Each database has a user list and a group list.

Libraries

A library stores documents and other libraries in a hierarchical structure. Libraries can be stored
within other libraries; the nested structure of libraries in a database is similar to the nested structure
of directories or folders within a file system. The topmost library in the hierarchy is called the Root
library. A database has exactly one root library, which is created automatically.

From a data modeling perspective, you can think of a library as a folder that can contain XML
documents, indexes, catalogs and BLOBs, as well as sub-libraries. Libraries are implemented as DOM
nodes, and all operations on documents, including XQuery queries, can also be performed on libraries.

Documents

A document is an object that stores XML data. The system can handle both valid (that is, conforming
to a structure defined in a DTD or XML Schema) and well-formed XML documents.

Indexes and index lists
Indexes can be used to speed up queries. Available indexing methods include full-text, multipath,
value, ID attribute and element name indexes.

An index list provides a list of all the indexes of a library or document.

Catalogs and validation

XML documents are validated against document type definitions (DTD) or XML Schemas, collectively
called models. Documents using an XML schema are validated differently than documents using a
DTD. The XML validation process can store DTD or XML schema information as an abstract schema
model (ASModel) in a catalog, which is linked to a library. By default, only the root library has a
catalog. Each model in a catalog has a unique ID.

44 EMC Documentum xDB Version 10.5 Manual

Introduction

Abstract schemas contain interfaces for handling schema information, such as the structure of
element declarations, and interfaces for applying schema information to DOMs validation. There is
full abstract schema support for DTDs and a more limited support for XML schema, with some
product-specific modifications.

BLOBs

Binary large objects (BLOBs) are binary non-XML files, such as image files (GIF, JPEG, PNG,
BMP), sound files (MP3, WAV), and Microsoft Office files (DOC, XLS, PPT). Storing BLOBs and
XML documents in the same database allows managing all resources for a specific project or product
in one uniform way.

Internal structure: databases, segments, files
and pages

Physically, a database consists of one or more segments. Each segment has one or more files and each
file occupies one or more pages. The physical and logical structures relate as follows:

A segment is a logical storage location within a database. Each database always has at least one
segment, the default segment. Segments can be added and empty segments can be deleted. The default
segment can never be deleted without deleting the database.

EMC Documentum xDB Version 10.5 Manual 45

Introduction

New libraries and data are stored in the default segment, unless specified otherwise. Data is never
automatically stored in another segment, even if the current segment is full. If you want automatic
overflow, use a single segment with multiple files.

Note: Transactions, even read-only ones, can require temporary data, for example new nodes in
XQuery queries, or old versions of documents. Unless specified otherwise, such data is held in
a temporary segment.

Methods exist for attaching a library to an existing segment, for assigning a segment for temporary
data and for storing all children of a specific library on a specific segment.

All segments of one library must have the same state at any time.

Database files

A segment can be spread physically over multiple files. A segment always has at least one file, the
default file. The default file can never be deleted without deleting its owner segment.

Files can be added to a database segment using the Admin Client.

The maximum size limit of a file can be set when the file is added to the segment, or later, provided the
limit is not less than the current size of the file. If a file exceeds the size limit, the overflow data is
allocated to the next file of the segment. If all the files in the segment have reached their limits, any
further allocation in the segment fails. Allocation is random, and different pages of a single document
can be stored in different files. Use different segments if you want to control where the data is stored.
Note: To keep data consistent, xDB sometimes allocates pages for internal page allocation
administration. In such cases, xDB ignores the maximum file size limit. As a result, the file may
slightly exceed the size limit set by the administrator.

Overflow to another file can be prevented by setting the maximum file size limit to 0 (zero), which
effectively means there is no maximum file size. In practice, setting an unlimited file size is useful
only for a last file.
Note: A file that has no maximum size may outgrow the available space. Preventing this can affect
performance, because the only reliable way to check for a full disk is by actually writing the (still
empty) page to the file while allocating the page.

Database configurations

Initial database configuration is specified by a database configuration file, page 230. The default
database configuration has a single segment with a single file and all data clustered in the default
segment. The Admin Client can be used to change the default configuration, to create or delete
segments and files, and to modify default cluster rules.

Detachable libraries
Detachable libraries can be detached from and attached to the database. Once a library is detached, it
is not accessible from the database.

46 EMC Documentum xDB Version 10.5 Manual

Introduction

A library can be detached if the library and its descendants are stored on a set of segments that are
not shared with any other libraries, and the ancestors of the library do not have other indexes than
id and name indexes.

A detachable library can have its own MultiPath indexes. The MultiPath index of a detachable library
can be merged with descendant library levels, but not with parent or ancestor levels.

A detachable library can have the following mutually exclusive states:

• read-write - Both read and write operations are allowed.

• read-only - Only read operations are allowed.

• detached - The library is logically or physically removed from the database and is not accessible
from the database.

• detach-point - Similar state as the detached state, except only a detachable library in a detach-point
state can be attached to the database. A detachable library in detached state cannot be directly
attached to the database.

By default, a detachable library has a read-write status.

Detachable libraries can be marked as non-searchable. A non-searchable detachable library is not
visible to search queries.

Detachable libraries can be backed up and restored individually.

Managing users and groups
xDB provides authorization and security support for managing user actions and user access to
information.

The xDB security model is based on three levels: user, administrator, and superuser. These user
types have different access levels, as follows:

• Users can access all data for which they have authorization.

• An administrator can access all the data and user information in one database.

• The superuser can create and delete a database, but cannot access any of the data stored in the
databases.

The following permission settings can be applied:

• Executable - Specifies that the object can be executed. Currently this setting is not applied to any
object in the xDB database.

• Writable - Specifies that the object can be modified or deleted.

• Readable - Specifies that the object can be viewed.

Permissions can be set for the following user types:

• Owner - The user who owns the object.

• Group - The group that has group access rights to the object.

• Other - All other users.

EMC Documentum xDB Version 10.5 Manual 47

Chapter 3

Installing xDB

This chapter contains the following topics:

• Pre-installation requirements
• Installing xDB on a Windows platform
• Upgrading xDB on Windows
• Installing xDB on a UNIX platform
• Upgrading xDB on UNIX
• Uninstalling xDB
• Verifying the xDB installation
• Creating a sample database

Pre-installation requirements
xDB installers are available for Windows 2000/XP/Vista/7 and for Unix. xDB can be used with
virtualized versions of these operating systems running in any version of VMware. Unix installers have
been tested on Linux, Solaris, AIX, and Mac OS X, including 64-bit versions of Red Hat Enterprise
Linux edition 6.3, AIX V6.1 TL1, Oracle Solaris 10, and HP-UX 11i v3 Itanium.

Before installing xDB, verify that your system meets the hardware and software requirements for xDB.

We highly recommend that you read the readme.txt file that is provided with the xDB distribution.

If your new xDB installation is intended for a non-standard environment or a specific software
application, like EMC Documentum Content Server with enabled XML Store or EMC Documentum
xPlore, consult the appropriate documentation for possible differences in requirements, installation
procedure and configuration.

If you have previous versions of xDB running, you should consider upgrading or uninstalling them. If
you want to have multiple xDB installations on one system, for example xDB 9.0 and 10.0 side by
side, you must use different installation locations and port numbers for each one.

Note: On Windows, the installer can not install multiple Windows Services for xDB. For example, it
can not configure both an xDB 10 and an xDB 9 background service.

Note: The xDB installation layout has changed slightly since version 9: third party jar files are now in
subdirectories within subdirectory lib, xdb.properties is in subdirectory conf, and the page server will
write logs to subdirectory log.

Note: xDB is a Java application, and requires a Sun Java Development Kit 7 or higher, or an SDK
with a fully compatible Java Virtual Machine. Ensure that this is present on the target machine before
you install xDB.

EMC Documentum xDB Version 10.5 Manual 49

Installing xDB

Using the Java command line requires configuring the CLASSPATH variable to include the required
JAR Files, page 68.

Table 2 Minimum system requirements for xDB

Java JDK 7 or higher (http://java.sun.com)

RAM 256MB

Hard drive space for xDB software 100MB

Hard drive space per database 1MB

Network TCP/IP

Installation parameters

The xDB installer will ask you to provide some parameters, including:

• The location where you want to install xDB.
• The base directory path to the JDK.
• A valid xDB license key. Note: xDB software licenses are valid for a limited time. If in doubt about
your license, contact xDB customer support.

• An xDB superuser password. This password is required for creating databases and some other
administrative tasks.

• Optionally, set advanced parameters, page 54.

Related links
Installing xDB on a Windows platform

Installing xDB on a UNIX platform

Installing xDB on a Windows platform
When installing or uninstalling xDB on Windows, you must be logged on as a Windows administrator,
or as a user with similar access privileges.

Running xdb_setup.exe installs xDB on a Windows machine. The installer copies files to the proper
directories, configures the xDB installation, and augments the PATH environment variable.

Note: The installer also sets up a dedicated page server as a Windows Service for the latest xDB
installation. It does not allow for multiple Windows Services for xDB. For example, after you install
xDB 10 alongside an existing xDB 9, there will be no longer be a Windows Service for the older
installation. For more information, see The xDB dedicated page server, page 70.

Note: If you are upgrading a previous xDB version, see Upgrading xDB on Windows, page 57.

To install xDB on a Windows platform:

50 EMC Documentum xDB Version 10.5 Manual

http://java.sun.com

Installing xDB

1. Double-click the xdb_setup.exe file, located in the root directory of the xDB distribution.

If you want to obtain debug output from the installer, hold down the Ctrl key while running
xdb_setup.exe, until a console window opens for display of debug output. You can preserve the
debug output by copy/pasting it from the console window to a text file before you exit the installer.

The installer starts the xDB installation, and displays the Introduction. The left panel of the
installation window shows the sequence and progress of the installation steps. Use the buttons at
bottom right for navigation.

2. Read the introduction, and Click Next.
The License Agreement appears.

3. Select the I accept option for the terms of the software license agreement, then click Next.
The Enter license key window appears.

EMC Documentum xDB Version 10.5 Manual 51

Installing xDB

4. Enter a valid xDB license key, then click Next.

The Choose Install Folder window appears. The default folder is C:\Program Files\xDB or similar,
depending on the locale of your Microsoft Windows installation.

Note: The database files and transaction log files will also be stored here, unless you change their
locations from the installation defaults in Advanced Settings.

5. Choose a folder or type a folder path for the target installation folder, then click Next.
The Choose Shortcut Folder window appears.

52 EMC Documentum xDB Version 10.5 Manual

Installing xDB

6. Choose where shortcuts for xDB should be created by the installer, then click Next.

The Choose JDK Location window displays a list of Java executables found on your system. You
can you to pick one from the list, or use the Choose Java Executable button or the Search Another
Location button to find the applicable Java Development Kit and set the path to the java.exe file.

7. Select the appropriate Java executable, then click Next
The Superuser password window appears (see Superuser, page 42).

EMC Documentum xDB Version 10.5 Manual 53

Installing xDB

8. Enter the password of the superuser twice, then click Next.
The Advanced installation option window appears.

9. Specify whether or not to set additional advanced parameters, then click Next.
• To complete the xDB installation with default values for the advanced parameters, select
Proceed with installation. Note: The default storage locations for database files and transaction
journal files are in subfolders of the installation folder.

• To manually change xDB Advanced settings, including paths for database files and transaction
journal files, and JVM and xDB server parameters, select Set some advanced parameters.

If you selected Set some advanced parameters, the xDB Advanced Settings - Database-directory
window appears.

54 EMC Documentum xDB Version 10.5 Manual

Installing xDB

a. Specify the following:

Advanced Settings Description

xDB database path The path to the database files. The default path is based on the
installation directory.

xDB journal path The default path to the transaction log files. For best performance,
store the transaction log files on a different physical disk than
database files.

Page size The database page size should match the page size of the
filesystem where the database shall reside. See Specifying the
database page size, page 77 for more information.

b. Click Next.
The xDB Advanced Settings - Default JVM settings window appears (showing related java
command line parameters in parenthesis).

EMC Documentum xDB Version 10.5 Manual 55

Installing xDB

c. You can specify the following default JVM settings:

Advanced Setting Description

Server JVM initial memory size
(-Xms)

The initial amount of memory to allocate for the server JVM.

Server JVM maximum memory
size (-Xmx)

The maximum amount of memory to allocate for the server JVM.

Client JVM initial memory size
(-Xms)

The initial amount of memory to allocate for client JVMs. This is
used for the Admin client, Java samples, and the command-line
client.

Client JVM maximum memory
size (-Xmx)

The maximum amount of memory to allocate for client JVMs.
This is used for the Admin client, Java samples, and the
command line client.

Extra Java Options Additional options for the JVM.

d. Click Next.
The xDB Advanced Settings - Server settings window appears.

e. Specify the server port number, and the server and client cache sizes. Optionally, you can
allow access by other hosts, and run the internal web server that is required for the xDB web
client, page 246.

The Windows installer creates and starts a Windows Service that acts as an xDB page server.
The following settings apply to this service:
Server settings Description

Server port number The port number of the page server. The page server can run on
any available port. A check is made whether the port is available.
NoteThe port number determines the URL which must be used
to access the database.

56 EMC Documentum xDB Version 10.5 Manual

Installing xDB

Server settings Description

Server cache size The cache size determines the number of pages cached by the
server to improve performance. The default value is 0, which
is the recommended value. With a cache size value of 0, the
database uses half of the JVM memory as cache.

Client cache size Clients connecting to the server, such as the Admin client or the
command-line client, will create their own, local database page
cache. This number controls the size of that cache. Half of the
JVMs memory ("0") is recommend.

Other hosts may access this server Select this option if you want to allow processes on multiple
machines to access the page server. For security reasons, by
default, only processes running on the same machine can access
the page server.

Web server port number The port number of the internal web server.

Run web server Enables running of the web server, which is required for the
xDB web client, page 246.

Other hosts may access the web
server

Select this option if you want to allow processes on multiple
machines to access the web server. For security reasons, by
default, only processes running on the same machine can access
the web server.

f. Click Next to finish entering installation settings.

The Pre-Installation Summary appears.

10.Verify your installation settings and make sure that the available disk space is sufficient.
• If not satisfied, use the Previous button to go back and change your installation choices.
• If satisfied, click the Install button to proceed with the xDB installation.
The installer shows installation progress. After succesful installation, the Install Complete window
displays the location of the installation. NoteComplete installation requires a Windows restart.

11. Set options to display documentation or to Restart Windows, and click Done.
Note: On Windows XP or Windows 2008R1, if you wish to use the complete Windows command line
functionality, install the appropriate Microsoft Visual C++ redistribution package, downloadable from:

• http://www.microsoft.com/en-us/download/details.aspx?id=5582 (Windows 32 bit)
• http://www.microsoft.com/en-us/download/details.aspx?id=2092 (Windows 64 bit)

Upgrading xDB on Windows
On Windows, installers for xDB 10.0 and higher can automatically upgrade an existing installation
of xDB version 9.0 or later, provided that you are prepared to give the installer the location and

EMC Documentum xDB Version 10.5 Manual 57

http://www.microsoft.com/en-us/download/details.aspx?id=5582
http://www.microsoft.com/en-us/download/details.aspx?id=2092

Installing xDB

superuser password of the existing installation. The installer needs those for removing the old binaries,
background process, documentation, and so on.

Note: Before upgrading, ensure that you have a backup of your existing installation.
1. Execute xdb_setup.exe from the distribution, and proceed as for a new installation, until the

installer asks for the install location.

2. When asked for the installation location, choose the location of the existing xDB installation
that you want to upgrade.

Note: If you do not specify a valid existing xDB location, the installer will create a new
installation, instead of upgrading an old one.

The installer displays an upgrade notice for the existing installation, for example:

3. Read the notice.

4. To upgrade the existing installation, click Next.

The installer asks for the superuser password for the existing federation, for example:

5. Enter the current superuser password.

Note: To ensure succesful installation, the supplied superuser password must be valid and correct.
6. Click Next.

58 EMC Documentum xDB Version 10.5 Manual

Installing xDB

The installation process will proceed as for a new installation.

Compatible settings from the previous installation will be adopted automatically. You can change
any of the advanced settings during the advanced installation process, except for the page size and
superuser password.

Installing xDB on a UNIX platform

On UNIX platforms, xDB can be installed as any user. You need Write permissions in both the
installation directories, the directory to which you will untar the distribution and the directory where
you will create your initial federation.

You must have a working Java executable in your PATH. You can verify the Java version by running
java -version from the command line. See also the Pre-installation requirements, page 49.

The xDB installer copies files to the proper directories, configures the xDB installation, and augments
the PATH environment variable.

Note: If you are upgrading a previous xDB version, see Upgrading xDB on UNIX, page 61.

To install xDB on a UNIX platform:

1. Extract the distribution .tar.gz file to the directory where you want to install xDB.
2. Run the sh setup.sh setup script, and enter the parameters that are required during installation.

To obtain debug output from the installer, set environment variable LAX_DEBUG=true or
LAX_DEBUG=file before you launch the installer. The file option redirects debug output to a file
jx.log in the install directory.

This script will set up xDB for use in /home/xDB10.5.0 and:
* create an xdb.properties with default settings for the server and clients
* create an initial empty federation

After installation, you can review xdb.properties and adjust it as necessary
Please enter your Java home-directory [/opt/oracle-jdk-bin-1.7.0.17] :
Please enter your xDB license key: ...
Please enter a superuser password :
Please enter a superuser password (confirm):
Database directory [/home/xDB10.5.0/data] :
Do you want to alter advanced settings? [y/N] [no] : y
Journal files directory (if relative, relative to data directory) [log] :
Page size in bytes [4096] :
Server port number [1235] :
Want webserver running? [y/N] [no] : y
Webserver port number [1280] :
May other hosts access the server? [y/N] [no] : y
Server JVM initial memory size (-Xms) [128M] :
Server JVM maximum memory size (-Xmx) [256M] :
Number of cachepages (0 means 50% VM memory): [0] :
Client JVM initial memory size (-Xms) [128M] :
Client JVM maximum memory size (-Xmx) [256M] :
Number of cachepages (0 means 50% VM memory): [0] :

EMC Documentum xDB Version 10.5 Manual 59

Installing xDB

Extra Java Options [-server] :

For most parameters, the xDB installer displays a default value between brackets. For questions
that require a Yes or No answer, the default choice is shown in upper case. For example, if the
choice is [y/N], N is the default value.

To accept a default, press the Enter key. To override a default, type a new value and press
Enter. If the value is incorrect, a message appears and the question is repeated.

3. Select whether you want to alter advanced settings, as follows:

• If you select no, the installation is completed using default settings.
• If you select yes, you can modify the following parameters:

– The directory for journal files. For performance reasons, place the journal files on a hard disk
different from the one with your database files.

– The page size in bytes. Ideally the page size is equal to or smaller than the block-size of the
file system where the database is located. See page sizes, page 77 for more information.

– The port number on which the xDB page server accepts connections.
– Whether applications on other machines can access the page server on this machine.
– The minimum and maximum amount of memory available to the JVM (-Xms and -Xmx),
for both server and client processes. The client values are used in scripts to start up client
applications like the administration client and the xhive-ant command. The server values
are used for the xdb run-server command.

– The number of pages the page server caches. More cached pages result in more memory usage
but better performance. The default value is 0, which means the server uses 50 percent of
the available JVM memory.

– The number of pages that database clients cache locally in client memory.
– Other Java command-line options. Usually these options are not changed.

The installer will save settings to the configuration file conf/xdb.properties and create an empty
federation at the database path you have chosen.

4. Perform the following post-installation steps:
a. Add the $XHIVE_HOME/bin directory to your path, for example:

bash$ export PATH="${PATH}:$XHIVE_HOME/bin"

or, if you use a (t)csh:

tcsh> setenv PATH ${PATH}:$XHIVE_HOME/bin

b. Run the xdb run-server command to start the page server.
This command starts a process for the page server, which can then be accessed from the xDB
administration tool and command line tool.

c. Add completion support for the xdb command to your shell. See the included readme.txt
for more details.

60 EMC Documentum xDB Version 10.5 Manual

Upgrading xDB on UNIX

Upgrading xDB on UNIX
On UNIX, the xDB installer does NOT upgrade any existing xDB version. If you have a previous
version, you must upgrade manually: use a different installation location for the new version, and
restore a good backup of the old installation into the new one.

For information on creating and restoring xDB backups, refer to Creating and restoring backups,
page 262.
1. Ensure full backup(s) of your old, existing xDB installation(s).
2. Perform a new installation, as described in Installing xDB on a UNIX platform, page 59.
3. Restore your backup(s) to the new installation.
4. Test the new installation.
5. Shut down the old installation, and deploy the new installation for use.

Uninstalling xDB
Depending on the platform on which xDB is installed, the uninstall process is as follows:

• On Windows:

Use the Uninstall xDB option in the xDB section of the Windows Start Programs menu to uninstall
xDB. The Windows uninstall process also unregisters the dedicated xDB page server service. If you
have multiple xDB installations on the same machine, the Add/Remove Programs option in the
Windows Control Panel applies only to the latest xDB installation.

The uninstall process may not be able to delete all data directories, compiled samples, and other
files that were created after xDB was installed. Remaining directories and files can be removed
manually afterwards.

• On UNIX:

If the page server is running, use the xdb stop-server command to stop it. Then remove the
installation and data directories.

Note: The uninstalling.txt file contains plain text instructions for uninstalling xDB.

Verifying the xDB installation
After xDB installation, you can use the xDB Admin Client to visually inspect and verify the installation
result, and to try out various functions, like creating a sample database, page 62.

You can also try the xDB command line client, page 246. Some of its most important commands
are listed in xDB commands, page 62. To display information about a command, run it without
any parameters.

EMC Documentum xDB Version 10.5 Manual 61

Upgrading xDB on UNIX

Table 6 Important xDB commands

Command Description

xdb admin Starts the Admin Client, a tool for maintainance of
federations, databases, users and content.

xdb create-database, page 251 Creates a new database.

xdb delete-database, page 246 Removes an existing database.

xdb create-federation, page 250 Creates a new empty federation.

xdb configure-federation, page 246 Sets the superuser password and license key on a
federation.

xdb backup, page 263 Saves a federation to a backup file.

xdb restore, page 264 Restores a federation from a backup file.

xdb info, page 251 Displays debug information on currently open
transactions and their locks.

xdb run-server, page 252 Starts the dedicated server process for the default
federation.

xdb stop-server, page 252 Stops the dedicated server process for the default
federation.

xdb suspend-diskwrites, page 246 Ensures the federation files are flushed to disk, and
suspends or resumes writing.

Creating a sample database
The xDB installer creates an empty federation. After installing xDB, you can create a sample
"united_nations" database. This database is used in some examples discussed in the xDB
documentation, and you can also use it to become familiar with xDB.

To create a sample database using the xDB Admin Client:

1. Start the Admin Client.

From the command line, you can use the xdb admin command in the \bin subdirectory of the xDB
installation. On Windows, the xDB Admin Client can usually be run from the Windows Start menu.

2. Select Database > Create database from the main menu, or type Ctrl + R.

The Create database window opens.

3. Enter database name united_nations with the superuser password as entered during the xDB
installation. Enter northsea as the administrator password.

Note: This database name and these passwords are used in all code samples. If you want to use
diferent ones, you must make appropriate changes to the SampleProperties.java file.

62 EMC Documentum xDB Version 10.5 Manual

Upgrading xDB on UNIX

4. Click OK.
Note: Databases can also be created using the xdb create-database command. For more information
about using the command line, see Using the command line client, page 246.

EMC Documentum xDB Version 10.5 Manual 63

Chapter 4

Configuring xDB

This chapter contains the following topics:

• Configuration files for Windows
• xDB JAR files
• Using the xhive.bootstrap property
• The xDB dedicated page server
• Using external editors with FTP
• Enabling FIPS 140-2 Level 1 Encryption

EMC Documentum xDB Version 10.5 Manual 65

Configuring xDB

The xdb.properties file

The xdb.properties file contains properties (key/value pairs) for command-line settings and page server
settings. The tables below describe available options.

Command-line settings

The command-line settings apply to tools like the xdb command and the xhive-ant command, as well
as to the page server. They can be overridden by setting environment variables with the same names.
Alternatively, the corresponding command-line switch(es) can be passed to the tool.

By default, the command-line settings are in the file xdb/conf/xdb.properties.

Optionally, user-specific properties can be set in the user’s home directory in a file .xdb.properties
(note the leading "." dot).
Note: Changes to server-related settings, such as the XHIVE_SERVER_MAX_MEMORY property,
require restarting the server to take effect. Other settings are applied the next time a tool is run.

Table 7 Command-line property settings

Property Description

XHIVE_BOOTSTRAP The URL used by command line tools, for example
xhive://localhost:1235.

XHIVE_DATABASE The default database to use. This is not set by the installer.

XHIVE_USERNAME
XHIVE_PASSWORD

Default credentials (user name and password) for the command
line tools. Default credentials are not set by the installer, and
should NOT be set on production systems.

XHIVE_MAX_MEMORY Maximum memory used by a single command line tool, as in the
-Xmx parameter to the JVM.

XHIVE_MIN_MEMORY Minimum memory used by a single command line tool, as in the
-Xms parameter to the JVM.

XHIVE_CACHEPAGES The number of cache pages allocated to command line tools. If
set to 0, half of the JVM memory is used.

XHIVE_FEDERATION The location of the default bootstrap file. Commands that use
this property include xdb run-server, xdb create-federation,
and xdb restore.

XHIVE_SERVER_MAX_MEMORY Maximum memory for the page server process (-Xmx).

XHIVE_SERVER_MIN_MEMORY Minimum memory for the page server process (-Xms).

XHIVE_OPTS Additional options to be passed to the JVM.

XHIVE_SERVER_ADDRESS The page server listens at this address.

If set to "*", the server accepts all connections. If set to
"localhost", only local connections are accepted.

XHIVE_SERVER_PORT The port used by the page server.

66 EMC Documentum xDB Version 10.5 Manual

Configuring xDB

Property Description

XHIVE_SERVER_CACHEPAGES Cache pages for the page server process. If set to 0, half of the
JVM memory is used.

XHIVE_HOME The installation location. It can be changed to use a different
software version or an installation in a different location. If left
empty, the tools try to infer a location.

XHIVE_JAVA_HOME The JDK installation to be used with the tools to which the
properties apply. This must be a proper Java Development Kit,
not a Java Runtime Environment (JRE).

If left empty, the tools use the JAVA_HOME path or any java
executable on the path.

XHIVE_STATISTICS_MONITOR-
ING_ENABLED

If set to true, enables statistics monitoring.

XHIVE_STATS_MONITOR_INTERVAL The statistics monitoring interval.

XHIVE_WEBSERVER_ADDRESS The web server listens at this address.

If set to "*", the server accepts all connections. If set to
"localhost", only local connections are accepted.

XHIVE_WEBSERVER_PORT The port used by the web server. If left empty, the web server
will not run.

XHIVE_WEBSERVER_NO_WEBAD-
MIN

If set to true, the web server will not serve the web admin
application.

Page server settings

These property settings apply to the page server (both internal and dedicated).

The page server looks for the xdb.properties file in the Java classpath.
Note: The xdb command adds the directory XHIVE_HOME/conf to the Java classpath automatically.

Table 8 Page server settings

Property Description

XHIVE_FIPS_ENABLED Enables (true) or disables (false/not set) FIPS 140-2 Level 1
encryption of user passwords. For more information, see Enabling
FIPS 140-2 Level 1 encryption, page 73.

xdb.lucene.* Various properties related to the multi-path indexes - see
Multi-path index properties, page 157.

EMC Documentum xDB Version 10.5 Manual 67

Configuring xDB

Configuration files for Windows
The Windows installer creates lax configuration files for property settings for executables of the Admin
Client, page 227 and for the Windows Service of the page server, page 70. For more information about
property settings, refer to the xdb.properties file, page 66.

• The file $XHIVE_HOME\bin\xDB Admin Client.lax contains options for the Admin Client
executable xDB Admin Client.exe, that only apply when the Admin Client is run from the Windows
Start Menu shortcut or from the executable. Note: These options do not apply to the xdb admin
command and the xhive-ant run-admin command.

• The file $XHIVE_HOME\bin\xDB Server.lax contains the following JVM options for the Windows
Service executable xDB Server.exe:

– lax.nl.java.option.java.heap.size.initial (equivalent to -Xms).
– lax.nl.java.option.java.heap.size.max (equivalent to -Xmx).
– lax.nl.java.option.additional (this option changes JVM parameters).
– lax.nl.current.vm (this option changes the default JVM).

xDB JAR files
Table Required JAR files shows JAR files that are needed for various xDB functionality. For use with
the Java command line, the relevant JAR files need to be included in your CLASSPATH.

The file lib/versions.txt of the xDB distribution contains a list of third-party software with version
numbers and licenses.
Table 9 Required JAR files

Functionality JAR files Comments

Basic xDB xhive.jar

antlr-runtime.jar, aspectjrt.jar,
fastutil-shrinked.jar, guava.jar,
icu4j.jar, lucene.jar, lucene-queries.jar,
lucene-queryparser.jar,
lucene-analyzers-common.jar,
lucene-sandbox.jar, xercesImpl.jar,
xml-apis.jar

XSLT transformations xalan.jar, serializer.jar If desired, another JAXP compliant
XSLT processor can be used, such as
Saxon.

PDF transformations fop.jar, avalon-framework.jar,
batik-all.jar, commons-io.jar,
commons-logging.jar, xmlgraphics-
commons.jar

68 EMC Documentum xDB Version 10.5 Manual

Configuring xDB

Functionality JAR files Comments

Command line clients jline.jar Only used by the command line
clients. Not necessary for applications
using xDB.

xhive-ant script ant.jar, ant-launcher.jar Only used by the xhive-ant script. Not
necessary to run applications.

Spring applications aopalliance.jar, spring-aop.jar,
spring-beans.jar, spring-context.jar,
spring-core.jar, spring-expression.jar,
spring-tx.jar, spring-web.jar,
spring-webmvc.jar

These JAR files are used for the Spring
code examples in src\samples\spring.

Webclient xdb-rest.jar, xdb-webadmin.jar

jetty-continuation.jar, jetty-http.jar,
jetty-io.jar, jetty-security.jar,
jetty-server.jar, jetty-servlet.jar,
jetty-util.jar, jetty-webapp.jar,
jetty-xml.jar, servlet-api.jar

asm.jar, jackson-core-asl.jar, jackson-
jaxrs.jar, jackson-mapper-asl.jar,
jersey-client.jar, jersey-core.jar,
jersey-json.jar, jersey-server.jar,
jersey-servlet.jar, jettison.jar

Only used by the command line clients
and the Windows Service.

FIPS 140-2 encryption,
page 73

cryptoFIPS.jar FIPS 140-2 encryption requires the
RSA BSAFE Crypto-J toolkit version
5.0.1. The toolkit is not shipped with
xDB and must be purchased separately
- see www.rsa.com.

Using the xhive.bootstrap property
A bootstrap specifies a connection to a federation, like a connection string in relational databases
specifies a data source and the means of connecting to it.

The bootstrap property can be used to connect to a page server in two different ways:

• Client/server: if the property is a URL of the form xhive://hostname:port, connection will
be to a dedicated page server server running behind the specified TCP/IP port. It takes the form
xhives://hostname:port for SSL encrypted connections, page 283.

• Internal server: if the property is a path to a file, the page server will run in the current JVM. The
bootstrap file is usually called XhiveDatabase.bootstrap. Depending on the application, an internal
server can be faster than using a remote connection, because communication overhead is avoided.
However, keep in mind that there can be only one page server at a time for a specific federation.

EMC Documentum xDB Version 10.5 Manual 69

http://www.rsa.com

Configuring xDB

The xDB dedicated page server
The standard xDB installation procedure configures the system with a dedicated page server, a small
Java program which runs as a background process and to which other applications can connect to
obtain access to the federation.

Note: This dedicated page server is not a required part of an xDB deployment, and running xDB
with a separate dedicated page server usually is not the best configuration for performance. The
reason that xDB is configured with a separate server by default is that this generally makes it more
convenient for new users to get started. For production applications where performance is essential it
may not be the best choice.

Configuring the dedicated page server

The following server configuration values are determined during xDB installation:

• Port number for accepting connection. The default port number is 1235.
• Page-cache size. The default value is 0, allowing the server to use half of the available JVMmemory.
• Addresses that are allowed to connect. The default value is ’localhost’, which only allows
connections from the same machine. Using ’*’ allows connections from every machine.

These configuration parameters are set in the xdb.properties file in the conf subdirectory underneath
the xDB installation home. The server processes must be stopped and restarted after changing
anything in the configuration. Enlarging the cache size requires allocating more memory to the
process by configuring the XHIVE_SERVER_MAX_MEMORY parameter in the properties file.
The selected page size is stored in the XhiveDatabase.bootstrap file, but cannot be changed after
creating a federation.

By default, the dedicated process is not configured for SSL connections. For more information about
SSL, see Using the Secure Socket Layer, page 283.

Running a background server process on UNIX

Due to differences in system layouts on UNIX systems, the xDB installer does not automatically
configure a background service for the page server. Users can set up their own startup item, typically a
shell script in /etc/init.d. The page server can be started as a background process using the
typical shell syntax.

Example of running a page server in the background on UNIX

#!/bin/sh
xdb run-server \

--debug --non-interactive \
>>/var/log/xdb-server.log \
2>>/var/log/xdb-server-error.log &
echo $! > /var/run/xdb-server.pid

70 EMC Documentum xDB Version 10.5 Manual

Configuring xDB

The xdb run-server command starts a server process for the default federation, to which other
processes can connect. The log output of any errors is sent to the console.

The xdb stop-server command connects to the server JVM running at the configured bootstrap
location and tells the server process to terminate.

For more information about these commands, see Server-related commands, page 252 and
Command-line client gobal options, page 251.

Running without a dedicated server

The page server process can be run inside a Java application, instead of using a dedicated page server.
Typically, running the server process inside an application offers better performance, and if necessary
the embedding application can accept connections from other applications.

To configure use without a dedicated server:

• Use the /path/to/XhiveDatabase.bootstrap path as bootstrap in your application, instead of
xhive://hostname:portname.

• Ensure that no dedicated server is running, because only one process at a time is allowed access to
the federation. On Windows, this is more likely than on Unix, because on Windows the installer
can configure a dedicated page server by default. On UNIX, the dedicated server is not started
automatically by the installer.

Using external editors with FTP
The xDB distribution includes a code sample of an FTP server implementation, which can be used
to enable storage and retrieval of documents in an xDB database by FTP-aware editors and other
applications.

For information on FTP use, including possible issues or limitations, consult the relevant
documentation of your operating system and your editor or other application.

The xDB FTP server can be started using the xhive-ant run-ftpserver command, as follows:
xhive-ant run-ftpserver -Ddbname=<DatabaseName>

For Windows, the URL for accessing an FTP-server has the format ftp://localhost/.

Managing DTDs
Some external XML editors must have access to a DTD to edit an XML document. In xDB, the DTDs
are located in a catalog and are associated with an XML document using a doctype declaration.

EMC Documentum xDB Version 10.5 Manual 71

Configuring xDB

Associating an XML document with a DTD requires:

• Storing the DTD in the database. DTDs can only be stored in folders that represent catalogs.
• Referencing the DTD in the doctype declaration of the document.

Example

The following example associates a DTD with an XML document.

The default doctype declaration for a new XML document is
<!DOCTYPE rootElem PUBLIC "publicId" "systemId">

There are two ways to associate a DTD with a document:

• Setting the publicId string to match a public ID of a DTD stored in the catalog of the library
where the document is stored.

• Setting the systemId to the full URL to the DTD as it can be accessed remotely, for example
http://localhost:8080/xhive/xhive-catalog/play.dtd.

When the file is opened again from the server, the document type declaration is changed to the
following format:
<!DOCTYPE rootElem PUBLIC "xDB public id" "xhive-catalog/filename.dtd">

Troubleshooting DTDs
Every library has access to a catalog that holds a list of stored DTDs. Documents can refer to the
DTDs in this catalog using the public ID in the document type declaration. The catalog is available
as a folder in each library, regardless of whether that library has a local catalog or not. The server
adds the folder to the list of file and directory names. The folder name is arbitrary and can be changed
in the source code. When a document is loaded from the database to an FTP client, the client uses
the system ID to look up the DTD. The client can only find the DTD in the database if the system
ID is a relative path, using a format like xhive-catalog/fileName.dtd. The client then requests the
fileName.dtd file in the xhive-catalog folder relative to the library where the document is stored. The
server sends the DTD to the client.

The relative file path can be set when the document is parsed for the first time.

The following information can be helpful when troubleshooting DTDs:

• The DTD is not stored when FTP is used to store a new document. .
• To store a new document with a DTD, the public ID must point to an existing file the catalog or
pass a full system ID. If the public ID matches a DTD file in the catalog, the document is linked to
that DTD.

• Documents with a linked DTD must have a system ID with a format like xhive-catalog/fileName.dtd.
• When documents are parsed into the database, they are parsed or created with certain default
parameters, which can be changed in the source code of the FTP server.

• When storing documents on the FTP server, new documents can be created during parsing and
existing documents can be replaced.

• When documents or DTDs are stored in the database over FTP, the client sends the document
contents as a stream to the server. If the document contains relative paths to files on the client
system, such as references to DTDs, the references cannot be resolved and parsing can fail.

72 EMC Documentum xDB Version 10.5 Manual

Configuring xDB

• The FTP server can store both XML documents and BLOBs based on the file extension. The file
extensions that are associated with XML files can be modified accordingly.

• On systems that already have an FTP-server running, the FTP server cannot run on the default port
number 21. The port-constant must be changed to connect the FTP server to another port.

Enabling FIPS 140-2 Level 1 Encryption
Optionally, support is available for FIPS 140-2 Level 1 encryption of user passwords, including
regular database users as well as federation superusers. FIPS is a standard that describes U.S. federal
government requirements for cryptographic modules used in IT products. Level 1 is the base security
level without additional physical security mechanisms.

The RSA BSAFE Crypto-J toolkit is required for FIPS 140-2 support. Note: The RSA BSAFE
Crypto-J toolkit is not included in the xDB distribution and must be purchased separately - see .

To enable FIPS 140-2 Level 1 encryption:

1. Install the RSA BSAFE Crypto-J toolkit by following the instructions included in the Crypto-J
installation package. This includes copying the cryptojFIPS.jar file under the JDK’s jre/lib/ext/
directory and registering and configuring the Crypto-J JCE security provider in the file
jre/lib/security/java.security.

2. Enable FIPS 140-2 encryption in $XHIVE_HOME/conf/xdb.properties by setting the
XHIVE_FIPS_ENABLED property to true:

XHIVE_FIPS_ENABLED=true

When FIPS 140-2 Level 1 encryption is enabled, the Crypto-J FIPS JCE security provider can be used
to encrypt user passwords.Note: Enabling FIPS 140-2 encryption on an existing federation does not
affect existing users. FIPS 140-2 encryption applies only to passwords of newly created users and to
password changes of existing users. This means that to encrypt the passwords of existing users in a
FIPS 140-2 compliant manner, those users must reset their passwords. Passwords encrypted using a
FIPS 140-2 compliant algorithm can co-exist with passwords encrypted using other algorithms.

EMC Documentum xDB Version 10.5 Manual 73

http://www.nist.gov/itl/upload/fips1402.pdf

Chapter 5

Optimizing Performance

This chapter contains the following topics:

• Improving server performance
• Configuring JVM and cache pages
• Choosing the database page size
• Linux file system performance
• Using multiple disks
• Disabling disk-write caches
• RPC tracing

Improving server performance
Generally, the easiest and most effective way to speed up an application is to run the page server in the
same JVM as the application. In this case, client and server communicate via method calls, which is
much faster than communicating via TCP/IP. Additionally, the system does not use a separate client
and server cache, which allows using more RAM for the single cache.

Because only one page server can run for a specific federation, an internal server can only be used
if the application architecture allows for it. If your architecture has multiple users simultaneously
running a client application that uses the server directly, you cannot use an internal server in that client
application: each application would attempt to start its own page server, and since there can be only
one, only the first application would succeed. However, in application architectures where all database
accesses are done from a single application server, using an internal server not only speeds up database
calls, it also simplifies application deployment.

An internal server can also function as a server for remote clients, provided that the main application
contains the necessary java code. If an internal page server is run within an application server, it is still
possible to connect to it, for example with the Admin Client, the xdb backup command or with a
data loading utility. By using the path and name of a bootstrap file as a bootstrap property, the main
application can run the page server internally. Any other application can then connect to the server that
runs in the main application by using an xhive://host:port URL as bootstrap.

Configuring JVM and cache pages
There are several JVM settings that impact the performance of the page server. The easiest to use and
most important one is the -server flag. Some JRE versions come with a client and a server compiler.

EMC Documentum xDB Version 10.5 Manual 75

Optimizing Performance

Using the server compiler can improve performance for CPU bound processes significantly. The
trade-off is a slower application startup that is irrelevant for server applications.

Upgrading to a new major version of the Sun JDK often causes a 10 percent performance improvement
for CPU bound applications due to optimizations. The new versions are more stable as well, and it is
recommended to use the latest release.

Depending on the application, the amount of memory available to the JVM and the page server cache
can also be important. Generally, the more memory is available, the better the performance. The
default installation configuration does not have much impact on a typical developer desktop, but is
usually insufficient for real server applications. It is impossible to recommend specific numbers,
because the optimal settings will depend on circumstances, including the application and the data, the
hardware and any other tasks that the hardware has to perform.

As a first estimation of the required cache pages for a page server, take common operations in the
application, such as frequently run XQueries. Make sure the queries are supported by indexes, then
add up the size of the cache pages occupied by the indexes. The Admin Client shows the index
page sizes on its Indexes tab.

Measure the performance of these common operations and see if they meet performance requirements.
Gradually increase the size of the page server cache until it does not increase performance. You can
obtain performance statistics in the Admin Client via main menu option Settings -> Performance
Statistics.

If statistics show that during a certain amount of work the number of cache pages loaded increases,
not all operations were serviced from the page cache. If the number of cache pages loaded does not
increase for a set of operations, then increasing the cache size will not increase performance.

Cache size does not have an impact on parsing new documents into the database.

To calculate the amount of memory used by the page server cache, multiply the number of cache
pages with the page size (in addition, there is a small amount of overhead per page, which should be
insignificant). The default value 0 for cache pages will automatically take half of the available JVM
heap.
cache pages * page size = total memory
memory for cache / page size = # cache pages

For example, if you have a page server server running with a 16 GB heap, and you’d like to allocate
75% of that as a cache on a federation with 4096 byte pages, the calculation would be roughly:

(75% * 16 GB) / (4096 bytes) = cache pages
(12 GB) / (4 KB) = cache pages
(12 Million) / (4) = cache pages
3 Million = cache pages

Note: Do not allocate the complete heap as a database cache. The server needs some room to maintain
additional data structures outside the cache in order to function.

A larger page cache leaves a smaller Java heap for regular program operation, which can
cause excessive Garbage Collection. Increasing the page server cache might thus lead to more
frequent/longer pauses and/or decrease application throughput. Tuning JVM Garbage Collection is
outside of the scope of this article, refer to your JVM supplier’s documentation.

76 EMC Documentum xDB Version 10.5 Manual

Optimizing Performance

Choosing the database page size

Creating a federation requires specifying a page size for its databases. This value should be a power or
2 in the range from 512 to 65536. In most cases, it is best to use the same value for the database page
size as the file system uses.

Each document and BLOB occupies an integer number of database pages. A smaller database page
size than the file system page size may save disk space, but at a cost in performance: when writing a
database page, the operating system must retrieve the old file system page, which involves copying the
database page into the file system page and writing back the whole file system page. When database
page size equals file system page size, retrieving the old file system page is not necessary.
Note: The database page size should never exceed the file system page size, because then file-writes
are not atomic. If the operating system crashes while a database page is only partly written to the disk,
that page becomes inaccessible, and it may even corrupt the entire database.

File systems

On Solaris operating systems, the default file system block size is 8192 bytes. On Windows with a
default NTFS file system and on Linux operating systems, the file system block size is 4096. These
default block sizes can be modified. Below is a list of commands that report block sizes on various
operating systems:

• On Windows 2000, chkdsk displays the size of an allocation unit (this command also checks the file
system, which may take some time to complete).

• On Windows XP and later, fsutil fsinfo ntfsinfo displays the number of bytes per cluster.
• On Linux with the ext2/ext3 filesystem, tune2fs -l /dev/device displays the block size of the file
system. On Linux with xfs, use the xfs_info /mountpoint command. Themount command displays
the mapping between devices and logical mount points.

• On Solaris and HP-UX, mkfs -m /dev/device displays the block size (bsize) of the file system. This
command may also work on other Unix-variants. Use with care, as mkfs is also used to create
new filesystems.

Linux file system performance
On Linux, there are some file systems for disk formatting. The xfs file system provides good
throughput on large files, and offers the best performance for typical page server usage. For more
information, see the XFS FAQ.

Using multiple disks
If possible, use a separate disk for storing federation transaction logs, page 43. Writing changes to the
federation’s transaction logs is more performance critical than modifying the database files, page 46. A
committing transaction has to wait for its log records to be flushed to the disk before it can continue.
Unless the cache has too many dirty pages in it, modifications to database files happen asynchronously
from a background thread.

EMC Documentum xDB Version 10.5 Manual 77

http://xfs.org/index.php/XFS_FAQ

Optimizing Performance

If multiple disks are used to store the data, the easiest and most effective way is a RAID 0 or RAID
1+0 configuration.

Disabling disk-write caches
Most hard disk drives use an internal write cache for buffering. When the operating system writes a
block to the disk, the disk confirms the write action as soon as the data is in the drive cache.

On rare occasions, a power failure or similar condition can prevent the data in the cache from actually
being written to the drive platters. If the operating system properly requests the disk to flush its
cache when an application calls for it, this should not be a problem. If the drive has a backup battery
or similar device to guarantee that confirmed writes are always written to the physical disk even
on a power failure, there is no issue.

When looking for further ways to prevent data corruption on power failure, consider disabling the
write cache on the relevant disk drives (for example, on Linux NFS, by using the "noac" mount
option). Note: Disabling the write cache can have a significant negative effect on performance.

RPC tracing
When RPC tracing is enabled, all Remote Procedure Calls to the backend server are logged. RPC
traces are useful in performance tuning and trouble-shooting, especially in a multi-node configuration.

Note: The section about RPC tracing assumes that the java.util.logging SLF4J binding is used. For
more information refer to the section about message logging, page 286.

An RPC call trace message can contain the following items:

1. Begin time
2. Logger name
3. Logging level
4. Thread ID
5. Session ID
6. Transaction ID
7. RPC request type
8. RPC call duration (in milliseconds)
9. Number of bytes sent
10.Number of bytes received
11. Host address of front-end machine
12.Host address of backend server
13.Node name
14.Method name
15. Parameters
16.Return value or exception

78 EMC Documentum xDB Version 10.5 Manual

Optimizing Performance

The logging mode and message format for RPC call trace messages can be configured in system
properties, as described in the table below.
Table 10 RPC tracing mode and format

System property Description

XHIVE_RPC_TRACING_MODE The logging mode. Valid values are:

standard - includes all 16 items.

compact - includes all items except Parameters and
Return value.

The default mode is standard.

XHIVE_RPC_TRACING_FORMAT The trace message format. Valid values are:

plain - plain text format.

xml - XML format.

The default format is plain. In plain text format, items
within the same trace message are delimited by space.

Example RPC call trace message in plain text format:
2009-07-31T15:57:50.262 com.xhive.trace.rpc FINEST thread-1
RemoteSession@15a6029 0 REQUEST_AUTHENTICATE 23 msecs 39 bytes sent
13 bytes received 127.0.0.1:1797 127.0.0.1:1794 primary
requestAuthenticate(userName=Administrator,password=******,
databaseName=MyDatabase,authSession=true,prechecked=false)

The same RPC call trace message in XML format:
<rpc-trace beginTime="2009-07-31T15:57:52.590"
loggerName="com.xhive.trace.rpc" loggingLevel="FINEST" threadId="main"
sessionId="testXMLFormatSystemProperties1" transactionId="0"
requestType="REQUEST_AUTHENTICATE" duration="0" bytesSent="39"
bytesReceived="13" frontEndAddress="127.0.0.1" frontEndPort="1797"
backEndAddress="127.0.0.1" backEndPort="1794" serverNodeName="primary"
methodName="requestAuthenticate">
<param name="userName">Administration</param>
<param name="password">******</param>
<param name="databaseName">MyDatabase</param>
<param name="authSession">true</param>
<param name="prechecked">false</param>
</rpc-trace>

Enabling or disabling RPC tracing

By default, RPC tracing is disabled. RPC tracing can be turned on or off using the
XHIVE_RPC_TRACING_ON system property. To enable RPC tracing use:

java.exe -DXHIVE_RPC_TRACING_ON=true

EMC Documentum xDB Version 10.5 Manual 79

Optimizing Performance

Enabling RPC tracing at system level

RPC tracing can be enabled at system level using the XHIVE_RPC_TRACING_ENABLE
system property. Trace message format and trace mode can be configured using the
XHIVE_RPC_TRACE_FORMAT and XHIVE_RPC_TRACE_MODE properties.

To enable RPC tracing a system level:
1. Configure the message format and trace mode in the %JAVA_HOME%/jre/lib/logging.properties

file. For descriptions of these system properties, refer to RPC tracing, page 78.
2. Open a console and enable tracing as follows:

java.exe -DXHIVE_RPC_TRACING_ENABLE=true

To disable tracing, set the DXHIVE_RPC_TRACING_ENABLE property to false:

java.exe -DXHIVE_RPC_TRACING_ENABLE=false

Sending RPC trace output to console or file

The com.xhive.trace.rpc Java logger and its associated logging handler record RPC trace messages
when RPC tracing is initialized.

You can use the %JAVA_HOME%//jre/lib/logging.properties file to set the logging level and to
direct xDB trace message output to console and/or to a file, as discussed below. Note: The xDB
JAVA_HOME can be set by XHIVE_JAVA_HOME in the file xdb.properties.

• Set the logging level for the RPC tracing logger.
To set the RPC tracing logging level to FINEST:

com.xhive.trace.rpc.level = FINEST

• Set the handler(s) and the corresponding logging level(s).
For example, to send verbose trace output to console and to file, set the handler(s) to FileHandler
and ConsoleHandler and to set the corresponding logging level for each:

handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

java.util.logging.FileHandler.level = FINEST

java.util.logging.ConsoleHandler.level = FINEST

If you send trace output to file, you can configure the trace file name, max size, and other parameters
in the logging.properties filehandler keys, as described in the table FileHandler configuration
keys, page 81.

80 EMC Documentum xDB Version 10.5 Manual

Optimizing Performance

Note: To apply the changes to the Java logging properties file, you must restart the application.
Changes to system properties are dynamic.

Table 11 FileHandler configuration keys

Key Description

java.util.logging.FileHandler.pattern Specifies a pattern for generating the output file name. For
more information, refer to the java.util.logging.FileHandler
API Java Doc.

java.util.logging.FileHandler.limit Specifies an approximate maximum amount in bytes to
write to any one file. If the value is 0, there is no limit. The
default value is 0.

java.util.logging.FileHandler.count Specifies how many output files to cycle through. The
default value is 1.

java.util.logging.FileHandler.level Specifies the default level for the Handler. This key must
be set to FINEST.

java.util.logging.FileHandler.formatter Specifies the name of a Formatter class to use.

Set this key to com.xhive.trace.log.RPCSimpleFormatter
when the value of XHIVE_RPC_TRACING_FORMAT is
plain.
Set this key to com.xhive.trace.log.RPCXMLFormatter
when the value XHIVE_RPC_TRACING_FORMAT is xml.

Refer to http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html for details about
JDK logging properties, .

Methods for RPC tracing
Enabling or disabling tracing at session level overrides enabling or disabling tracing at application
level, which in turn overrides enabling and disabling tracing at system level.

At session (JVM) level, RPC tracing is enabled or disabled using the enableRPCTracing() and
disableRPCTracing() methods of the com.xhive.core.interfaces.XhiveSessionIf class. When RPC
tracing is enabled or disabled at session level, it is not necessary to set any system properties or
logging properties.

For more information about the enableRPCTracing() and disableRPCTracing() tracing methods, see
the Java API documentation.

RPC Trace XML schema example
Below is an example of an XML schema for RPC tracing.
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="rpc-trace" type="rpc-trace-type"/>

EMC Documentum xDB Version 10.5 Manual 81

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

Optimizing Performance

<xs:complexType name="rpc-trace-type">
<xs:sequence>
<xs:element name="param" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="name" type="xs:string" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="returnValue" type="xs:string" minOccurs="0"/>
<xs:element name="exception" type="exception-type" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="beginTime" type="xs:string" use="required"/>
<xs:attribute name="loggerName" type="xs:string" use="required"/>
<xs:attribute name="loggingLevel" type="xs:string" use="required"/>
<xs:attribute name="threadId" type="xs:string" use="required"/>
<xs:attribute name="sessionId" type="xs:string" use="required"/>
<xs:attribute name="transactionId" type="xs:long" use="required"/>
<xs:attribute name="requestType" type="xs:string" use="required"/>
<xs:attribute name="duration" type="xs:long" use="required"/>
<xs:attribute name="bytesSent" type="xs:long" use="required"/>
<xs:attribute name="bytesReceived" type="xs:long" use="required"/>
<xs:attribute name="frontEndAddress" type="xs:string" use="required"/>
<xs:attribute name="frontEndPort" type="xs:unsignedShort" use="required"/>
<xs:attribute name="backEndAddress" type="xs:string" use="required"/>
<xs:attribute name="backEndPort" type="xs:unsignedShort" use="required"/>
<xs:attribute name="serverNodeName" type="xs:string" use="required"/>
<xs:attribute name="methodName" type="xs:string" use="required"/>

</xs:complexType>
<xs:complexType name="exception-type">
<xs:sequence>
<xs:element name="message" type="xs:string"/>
<xs:element name="frame" type="frame-type" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="frame-type">
<xs:sequence>
<xs:element name="class" type="xs:string"/>
<xs:element name="method" type="xs:string"/>
<xs:element name="line" type="xs:int" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

82 EMC Documentum xDB Version 10.5 Manual

Chapter 6

Creating Applications

This chapter contains the following topics:

• Building and running applications
• Running a sample
• Creating a database using the API
• Connecting to a database
• Getting a database configuration
• Using sessions and transactions
• Creating libraries
• Storing BLOBs
• API methods for managing users and groups
• Using a RAM segment for temporary data
• The xDB dedicated page server program
• Using the FederationSet API
• Using xDB with Maven 2
• Using xDB with Spring
• xDB and OSGi
• Using xDB with JAAS
• Using the API with SSL

Building and running applications
This chapter provides basic instructions on how to develop xDB applications, dealing with basic tasks
such as database creation and connection, programming a transaction, creating libraries, storing
BLOBs, managing users and running a dedicated page server. It also discusses xDB support for
Maven 2, Spring, OSGi, JAAS and SSL.

Subsequent chapters discuss working with documents, session/transaction management, indexes,
querying, administration tools, and more advanced subjects.

The text includes references to code samples that you can run using the xhive-ant tool, provided
you have installed xDB and created a sample database, as described in the chapter about installing
xDB, page 49.

EMC Documentum xDB Version 10.5 Manual 83

Creating Applications

For information on compiling and running code samples and other programs, see Running a sample,
page 84.

Running a sample

A standard xDB installation includes a /src/ directory, which contains a number of java code samples.
Most of the general examples that the manual refers to are in /src/samples/manual. These samples
can be run using the xhive-ant tool:
xhive-ant run-sample -Dname=manual.[sample]

Note: The settings in the file SampleProperties.java must match your current setup. These settings
include the superuser and administrator passwords and the database name. Note: The /src/ directory
also includes some separate, special samples that need to be set up and run differently from the
“manual” Java code samples. For more information, refer to the file /bin/build.xml and the inline
Javadoc documentation of the sample’s source code.

To run a “manual” sample:

1. Open a command prompt and navigate to the /bin directory.
2. Enter a run-sample command, for example:

xhive-ant run-sample -Dname=manual.StoreDocuments

The xhive-ant command sets the proper CLASSPATH and other parameters. The example
command above runs a sample that inserts two documents into the database. If the command runs
successfully, a message appears stating the number of documents stored in the database.

Creating a database using the API

You can create a database with the createDatabase() method of the
com.xhive.core.interfaces.XhiveFederationIf interface. To create a database manually, you can use
the Admin Client, page 230 or the xdb create-database command, page 251.

1. Start a session and open a connection as superuser. The databaseName parameter of the connect()
call should be null.

XhiveDriverIf driver = XhiveDriverFactory.getDriver();
if (!driver.isInitialized()) {
driver.init(1024);

}
XhiveSessionIf session = driver.createSession();
session.connect(superUserName, superUserPassword, null);

2. Get a handle to the federation, as follows:

XhiveFederationIf federation = session.getFederation();

84 EMC Documentum xDB Version 10.5 Manual

Creating Applications

3. Call the createDatabase() method with the name of the new database and its administrator
password.

federation.createDatabase(newDbName, administratorPassword, null, System.out);

This creates a default configuration. If you want a custom configuration, you can specify a
configuration file, page 86. For more information about the physical file structure of a database,
see Database files, page 46.

Note: The superuser can create and delete databases, but cannot administer them. To perform
administrative actions on the new database, you need to disconnect and then reconnect as database
administrator.

Note: The superuser is not represented by an object in the xDB API.

Note: If you changed the default superuser password of the xDB installation, change the source
code of the CreateDatabase sample accordingly.

Samples

CreateDatabase.java

API documentation

com.xhive.core.interfaces.XhiveFederationIf

Connecting to a database
Applications can explicitly specify a bootstrap by calling XhiveDriverFactory.getDriver(String
bootstrap). When called without a parameter, XhiveDriverFactory.getDriver() tries to find a
federation via (in this order):

• the Java system property xhive.bootstrap
• the first line of a text file called xhive.bootstrap in the current working directory of the Java process
• the environment variable XHIVE_BOOTSTRAP (The xDB command line tool will also use this
environment variable, if run without an explicit federation argument.)

Note: To use the same internal xDB server from different applications, those applications must use
the same Java class loader to load the xDB classes. Otherwise, the xDB code loaded by each class
loader attempts to start its own xDB server and all but the first one fail.
To connect to an xDB database:
1. Obtain an xDB driver:

XhiveDriverIf xhiveDriver = XhiveDriverFactory.getDriver();

If you did not specify the bootstrap in the JVM environment, pass the location as an argument to
the getDriver() method, for example:

XhiveDriverIf xhiveDriver = XhiveDriverFactory.getDriver("xhive://localhost:1235");

If you connect to the database without a server, use a path to the XhiveDatabase.bootstrap file.
2. Initialize the local page cache shared by the sessions for this driver:

EMC Documentum xDB Version 10.5 Manual 85

./../../src/samples/manual/CreateDatabase.java
./../apidocs/com/xhive/core/interfaces/XhiveFederationIf.html

Creating Applications

xhiveDriver.init();

You need initialize a specific driver only once in your application. You can use the isInitialized()
method to verify whether the driver has been initialized.

3. Create a new XhiveSessionIf session using the createSession() method from the
com.xhive.core.interfaces.XhiveSessionIf interface:

XhiveSessionIf session = xhiveDriver.createSession();

4. Connect to the database, supplying a user name, password, and database name:

session.connect(UserName, UserPassword, DatabaseName);

XhiveDriverIf driver = XhiveDriverFactory.getDriver();
if (!driver.isInitialized()) {
driver.init(1024);

}
XhiveSessionIf session = driver.createSession();
session.connect(userName, userPassword, databaseName);

Samples

ConnectDatabase.java

API documentation

com.xhive.XhiveDriverFactory

com.xhive.core.interfaces.XhiveDriverIf

com.xhive.core.interfaces.XhiveSessionIf

Getting a database configuration
The API method XhiveDatabaseIf.getConfigurationFile() returns a DOM Document with the
database’s current configuration, page 46.

API documentation

com.xhive.core.interfaces.XhiveDatabaseIf.html#getConfigurationFile()

Using sessions and transactions
In xDB, all database operations take place within a session. The developer can determine the scope of
a session. One or more transactions can occur within a session. For example, a transaction can be
a group of operations that accesses and updates XML documents or parts of XML documents in a
database. Uniting a group of operations in a transaction makes that group of operations atomic,
ensuring that the database is never left in an inconsistent state: either all the instructions complete
successfully or the entire transaction fails.

86 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/ConnectDatabase.java
./../apidocs/com/xhive/XhiveDriverFactory.html
./../apidocs/com/xhive/core/interfaces/XhiveDriverIf.html
./../apidocs/com/xhive/core/interfaces/XhiveSessionIf.html
./../apidocs/com/xhive/core/interfaces/XhiveDatabaseIf.html#getConfigurationFile()

Creating Applications

To performing transactions, first connect to a database and create a session, as described in Connecting
to a database, page 85, then follow the steps below. For more information, see the chapter on Session
and Transaction Management, page 133.

To use transactions within xDB:
1. Start the transaction with the begin() method of the com.xhive.core.interfaces.XhiveSessionIf

interface.
2. Enter the instructions that should be executed during the transaction.
3. End the transaction with either the commit() or the rollback() method.

The commit() method completes the transaction.

The rollback() method reverses all instructions in the transaction. It should always be used
if a failure or unexpected exception occurs during the transaction, for the sake of database
consistency. For example, if the disk space is exceeded while loading a document, partial document
modifications can result in an inconsistent data structure.

Note: After a call to commit() or rollback(), all references to database objects (such as nodes,
libraries, etc.) become invalid. If you want to continue using the objects after a commit(), use
checkpoint() instead. This method commits all persistent operations executed since the previous
begin() or checkpoint() method call. The transaction remains active after the checkpoint() call
and references to database variables remain usable.

Example

The example transaction below parses external XML documents and appends them to a library. If
an error occurs during parsing or appending, the entire transaction is rolled back and none of the
documents are appended.
session.begin();
try {
XhiveLSParserIf parser = rootLibrary.createLSParser();
for (int i=1; i<=numFiles; i++) {
XhiveDocumentIf newDocument =

parser.parseURI(new File(baseFileName + i + ".xml").toURL().toString());
rootLibrary.appendChild(newDocument);

}
session.commit();

} catch (Exception e) {
// in case of an error: do a rollback
session.rollback();
e.printStackTrace();

} finally {
// always ensure that the session is cleaned up in a finally block
if (session.isOpen()) session.rollback();
// remove the session
session.disconnect();
session.terminate();

EMC Documentum xDB Version 10.5 Manual 87

Creating Applications

}

Samples

UseSessions.java

API documentation

com.xhive.core.interfaces.XhiveSessionIf

com.xhive.core.interfaces.XhiveDriverIf

Creating libraries
The nested structure of libraries within a database is like the nested structure of directories or folders
within a file system. There is only one root library, which is created automatically with a new
database. You can add libraries and documents as needed to build a suitable document hierarchy or
storage architecture.

To create a library:
1. Obtain a handle to the parent library. If that parent is the root library, use the getRoot() method to

get a handle. Otherwise, use a previously instantiated variable.
2. Create the library using the createLibrary() method.
3. Select a unique name for the new library using the setName() method.

Note: Naming a library is optional, but strongly recommended because several access and indexing
methods only work with named libraries.

4. Append the new library to its parent using the appendChild() method.

Example

The sample code below creates a library called Publications in the root, with one nested library
called General Info.
// get a handle to the root library
XhiveLibraryIf rootLibrary = united_nations_db.getRoot();

// create a library
XhiveLibraryIf newLibA = rootLibrary.createLibrary();

// give the new library a name
newLibA.setName("Publications");

// append the new library to its parent
rootLibrary.appendChild(newLibA);

// create a library which is a sublibrary of newLibA
XhiveLibraryIf newLibA1 = newLibA.createLibrary();

// give the new library a name
newLibA1.setName("General Info");

88 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/UseSessions.java
./../apidocs/com/xhive/core/interfaces/XhiveSessionIf.html
./../apidocs/com/xhive/core/interfaces/XhiveDriverIf.html

Creating Applications

// append the new library to its parent
newLibA.appendChild(newLibA1);

The sample code creates the following library hierarchy:

Figure 3 Library hierarchy

Related topics

Managing detachable libraries

Samples

CreateLibrary.java

API documentation

com.xhive.core.interfaces.XhiveDatabaseIf

com.xhive.dom.interfaces.XhiveLibraryIf

com.xhive.dom.interfaces.XhiveLibraryChildIf

Storing BLOBs
xDB stores BLOBs as a special type of node, the BLOB node. The method createBlob() creates
a BLOB node. After creating a BLOB node, the content of the node must be filled through the
setContents() method. To add the BLOB node, the normal methods for adding nodes can be
used: appendChild() or insertBefore():
String imgFileName = "un_flags.gif";
String imgName = "Flags of UN members";
FileInputStream imgFile = new FileInputStream(SampleProperties.baseDir + imgFileName);

// create BLOB node
XhiveBlobNodeIf img = charterLib.createBlob();

// set the contents and name of the BLOB node
img.setContents(imgFile);
img.setName(imgName);

// append the BLOB node to the library
charterLib.appendChild(img);

BLOBs stored in xDB can be retrieved using the getContents() method in XhiveBlobNodeIf. This
method returns an InputStream. The getSize() method returns the size of the BLOB in bytes:
// retrieve the contents of the BLOB node
InputStream in = img.getContents();

EMC Documentum xDB Version 10.5 Manual 89

./../../src/samples/manual/CreateLibrary.java
./../apidocs/com/xhive/core/interfaces/XhiveDatabaseIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryChildIf.html

Creating Applications

// retrieve the size of the BLOB node
int imgSize = (int)img.getSize();

A FileOutputStream can be used to output the contents of the BLOB node to a file:
// output the image to a new file
FileOutputStream out =

new FileOutputStream(SampleProperties.baseDir + "copy_of_" + imgFileName);
try {
byte[] buffer = new byte[imgSize];
int length;
while((length = in.read(buffer)) != -1) {
out.write(buffer, 0, length);

}
} finally {
out.close();
in.close();

}

When iterating over the child nodes of a library, BLOB nodes can be distinguished from other nodes
by their node type which is XhiveNodeIf.BLOB_NODE:
Node n = charterLib.getFirstChild();
while (n != null) {
if (n instanceof XhiveBlobNodeIf) {
System.out.println("BLOB node found: " + ((XhiveLibraryChildIf)n).getName());

}
n = n.getNextSibling();

}

Samples

StoreBLOBs.java

API documentation

com.xhive.dom.interfaces.XhiveBlobNodeIf

com.xhive.dom.interfaces.XhiveNodeIf

API methods for managing users and groups
The basic security and authorization levels use the xDB authority object in the XhiveAuthorityIf
interface. Authority objects are associated with document objects. Each document object always has
exactly one attached authority object. An authority object can assign one of the following permission
settings to the document object:

API methods for managing users, user lists, groups, and group lists are listed in table Management
interfaces and methods, page 90.

Table 12 Management interfaces and methods

Interface Methods

XhiveUserListIf addUser(), removeUser(), getUser(), hasUser()

XhiveUserIf setPassword(), isAdministrator()

90 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/StoreBLOBs.java
./../apidocs/com/xhive/dom/interfaces/XhiveBlobNodeIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html

Creating Applications

Interface Methods

addGroup(), removeGroup(), getGroup(), hasGroup()

isMember(), users()

Example

The following example uses the XhiveUserListIf and XhiveGroupListIf interface to create a user, a
group, and then adds the user to the group.
XhiveUserListIf userList = united_nations_db.getUserList();
XhiveGroupListIf groupList = united_nations_db.getGroupList();

// create a new user (unless it already exists)
if (!userList.hasUser(userName)) {
userList.addUser(userName, userPassword);

}

// create a new group (unless it already exists)
if (!groupList.hasGroup(groupName)) {
groupList.addGroup(groupName);

}

// add user to group (unless it is already a member)
XhiveUserIf user = userList.getUser(userName);
XhiveGroupIf group = groupList.getGroup(groupName);
if (!group.isMember(user)) {
user.addGroup(group);

}

Samples

ManageUsers.java

API documentation

com.xhive.core.interfaces.XhiveAuthorityIf

com.xhive.core.interfaces.XhiveGroupIf

com.xhive.core.interfaces.XhiveGroupListIf

com.xhive.core.interfaces.XhiveUserIf

com.xhive.core.interfaces.XhiveUserListIf

Using a RAM segment for temporary data
A RAM segment is a special type of database segment that is kept in the database cache
but never written to a file. A RAM segment for temporary data can be enabled using the
setTemporaryDataSegment() method:
XhiveDatabaseIf database = session.getDatabase();
database.setTemporaryDataSegment(XhiveDatabaseIf.RAM_SEGMENT_NAME);

EMC Documentum xDB Version 10.5 Manual 91

./../../src/samples/manual/ManageUsers.java
./../apidocs/com/xhive/core/interfaces/XhiveAuthorityIf.html
./../apidocs/com/xhive/core/interfaces/XhiveGroupIf.html
./../apidocs/com/xhive/core/interfaces/XhiveGroupListIf.html
./../apidocs/com/xhive/core/interfaces/XhiveUserIf.html
./../apidocs/com/xhive/core/interfaces/XhiveUserListIf.html

Creating Applications

The xDB dedicated page server program
The dedicated page server is a small Java program that accesses the xDB API. Its purpose is described
in the section about the xDB dedicated page server, page 70.

The server process essentially consists of the following code:
/*Get a driver for a bootstrap-location*/
XhiveDriverIf driver = XhiveDriverFactory.getDriver(bootstrapPath);
driver.init(cachePages); // Initialize the cache of the driver

ServerSocket socket = new ServerSocket(port); // Create a listen socket
driver.startListenerThread(socket); // Start accepting remote connections
wait(); // Wait forever in this main thread

It is important to realize that running xDB with a separate dedicated page server such as configured
after installation usually is not the best configuration for performance. The xDB installer configures
xDB with a separate server because this is generally a more convenient way to get started, but for
production applications where performance is essential it may not be the best choice. Alternatively,
Java applications can access the database directly through the bootstrap file, without making any
network connection. However, while one process is accessing database files directly, no other
processes (including the dedicated server) can directly access the database. This need not be a problem:
if the direct access application includes the lines related to startListenerThread method from the
above code segment, it can start a listener thread to accept remote connections from other applications.

Using the FederationSet API
A federation set can run multiple federations in a single page server, using a single page cache and
TCP port. For more information, refer to Federation sets, page 281.

The com.xhive.federationset.interfaces package provides methods to manipulate a federation set
description file, get XhiveDriverIf objects, and start federation servers.

Creating a federation set

A federation set can be created like this:

String filename = "/path/to/fedsetDescrFile";
XhiveFederationSetFactory.createFederationSet(filename);
XhiveFederationSetIf fs =

XhiveFederationSetFactory.getFederationSet(filename, null);
Map<String, String> federations = fs.getFederationMap();
federations.put("fdname", "/path/to/bootstrapfile");

This would result in a federation set description file like this:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:federation-set xmlns:ns2="http://www.xhive.com/federationset/schema">

<federation-list>
<federation file="/path/to/bootstrapfile" name="fdname"/>

</federation-list>

92 EMC Documentum xDB Version 10.5 Manual

Creating Applications

</ns2:federation-set>

Using a federation set

You can get a driver to the federation denoted by "fdname" ("/path/to/bootstrapfile")
through the federation set server like this:

XhivePageCacheIf pageCache =
XhiveDriverFactory.getFederationFactory().createPageCache(4096);

XhiveFederationSetIf fs =
XhiveFederationSetFactory.getFederationSet("xhive://hostname:1235/",
pageCache);

XhiveDriverIf driver = fs.getFederation("fdname");
// Use driver normally, e.g., create session on it

To use a federation set internally, the server does not require a start. Only the URI of the federation set
is changed in the example code below:

XhivePageCacheIf pageCache =
XhiveDriverFactory.getFederationFactory().createPageCache(4096);

XhiveFederationSetIf fs =
XhiveFederationSetFactory.getFederationSet("/path/to/federationset",
pageCache);

XhiveDriverIf driver = fs.getFederation("fdname");
// Use driver normally, e.g., create session on it

All federations in the federation set share the single page cache.

There is a convenience method as well:

XhiveFederationSetFactory.getFederation()

To get a driver to a federation, whether it is accessed through a federation set or not:

int numCachePages = ...;
XhiveFederationFactoryIf ff = XhiveDriverFactory.getFederationFactory();
XhivePageCacheIf pc = ff.createPageCache(numCachePages);
XhiveDriverIf driver = XhiveFederationSetFactory.getFederation(path, pc);

With path = "/path/to/fedsetDescrFile#fdname", you would get a driver to the federation
"fdname" in federation set "/path/to/fedsetDescrFile".

After running a federation set server at port 1235, you would get the same using as path:
"xhive://hostname:1235#fdname".

The part of the path before the hash (#) is interpreted as a path to a federation set (description file or
server). The part of the path after the hash is treated as a path to a federation within the federationset.

Without a hash, method XhiveFederationSetFactory.getFederation() interprets the path just like
method XhiveDriverFactory.getDriver().

EMC Documentum xDB Version 10.5 Manual 93

Creating Applications

Path "/path/to/bootstrapfile" is interpreted as a path to a federation bootstrap file, and path
"xhive://hostname:1235" as a path to a federation server.

Using xDB with Maven 2
The build tool Maven 2 allows applications to declare dependencies on other projects, and provides
automatic resolution of those dependencies and many other useful features. For use with Maven 2, the
xDB installation includes a sample POM file.

Prerequisites:

• xDB installed on the local computer
• Maven 2 installed and available on the command line
• Appropriate settings in $XHIVE_HOME/lib/pom.xml
• You should be familiar with using the command line and with Maven 2

To set up xDB in your local Maven repository, follow the steps below.

1. Open a command line window in the xDB installation folder.
2. Run the command mvn install:install-file -DpomFile=lib\pom.xml -Dfile=lib\xhive.jar.

Note: The instructions in this and the following steps assume a Windows command line. If you
are on UNIX, replace the backslashes (’\’) with forward slashes (’/’).

This installs xDB into the local Maven repository.
3. Install xDB’s Javadoc into the Maven repository.

Note: This step is optional, but provides a better development experience when using an IDE.
a. Type cd docs\apidocs to switch to the docs\apidocs directory.
b. Create the jar file in the root directory by running jar cf ..\..\xhive-javadocs.jar *
c. Type cd ..\.. to move back to the top folder of the xDB installation.
d. Type mvn install:install-file -DpomFile=lib\pom.xml -Dfile=xhive-javadocs.jar

-Dclassifier=javadoc to install the Javadoc jar into the Maven repository.
e. Afterwards, you can delete the file xhive-javadocs.jar from your xDB directory.

You can declare a dependency on xDB in Maven-based projects by including the following in your
POM’s dependency section (make sure to set <version/> to your current xDB version):

<dependency>
<groupId>com.xhive</groupId>
<artifactId>xdb</artifactId>
<version>10.5</version>

</dependency>

Using xDB with Spring
xDB supports convenient declarative transactions when used in combination with the Spring
framework. Applications can configure an xDB transaction manager in their Spring application context
and use Spring’s transaction management facilities to manage xDB transactions. This requires general

94 EMC Documentum xDB Version 10.5 Manual

http://maven.apache.org
http://www.springframework.org
http://www.springframework.org

Creating Applications

knowledge of the Spring framework, and in particular Spring data sources. This text does not discuss
xDB’s XA transaction support, which can also be used in conjunction with Spring.

xDB provides three classes to support Spring transactions:

• XhiveDataSource is comparable to a JDBC session pool. This class holds the XhiveDriverIf
reference and pools XhiveSessionIf objects for your application. First read connection settings from
a properties file, connection.properties in the WEB-INF folder of your war file, and then pass the
bootstrap, database, username, and password values for XhiveDataSource’s constructor.

• XhiveTransactionManager is a Spring TransactionManager that will handle transactions according
to Spring’s rules. In particular, it will open transactions, make sure to commit them or roll them back
after web requests, and handle configuration such as the readOnly = true flag in the example below.

• XhiveSessionAccess provides access to the xDB transaction. You need to explicitly tell Spring
about its presence, so that Spring can automatically inject it into your code.

Note: The Maven 2 POM file included in the xDB distribution ($XHIVE_HOME/lib/pom.xml)
specifies all necessary dependencies for developing Spring-based xDB applications. See Using xDB
with Maven 2, page 94 for more information.

The following example shows a Spring application context configuration, using these classes to
provide transactional support.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.2.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/context/spring-tx-3.2.xsd">
<context:property-placeholder location="/WEB-INF/connection.properties"/>
<context:annotation-config/>
<tx:annotation-driven/>
<bean class="com.xhive.spring.XhiveSessionAccess"/>
<bean id="transactionManager" class="com.xhive.spring.XhiveTransactionManager"/>
<bean id="dataSource" class="com.xhive.spring.XhiveDataSource">
<constructor-arg value="${sessionPool.bootstrap}"/>
<constructor-arg value="${sessionPool.database}"/>
<constructor-arg value="${sessionPool.username}"/>
<constructor-arg value="${sessionPool.password}"/>

</bean>
</beans>

After configuring the transactional support, it can be used in Java code like this:

@Controller
public class TestController {
@Autowired
private XhiveSessionAccess acc;

@Transactional(readOnly = true)
@RequestMapping("/test-{name}.html")
public ModelAndView test(@PathVariable String name) {

EMC Documentum xDB Version 10.5 Manual 95

./../apidocs/com/xhive/spring/XhiveDataSource.html
./../apidocs/com/xhive/spring/XhiveTransactionManager.html
./../apidocs/com/xhive/spring/XhiveSessionAccess.html

Creating Applications

HashMap<String, Object> params = Maps.newHashMap();
params.put("name", name);
XhiveXQueryValueIf result = acc.query("document { <result>Hello, { $name }," +

" it is now { current-dateTime() }</result> }", params).next();
return new ModelAndView("main", "xmlSource", new DOMSource(result.asNode()));

}
}

API documentation
XhiveDataSource

XhiveTransactionManager

XhiveSessionAccess

xDB and OSGi

OSGi (Open Service Gateway initiative) is a framework for developing and deploying modular
software programs and libraries in Java. OSGi applications are built of bundles which are dynamically
loadable collections of Java classes, jars, and configuration files that explicitly declare their external
dependencies.

xDB supports deployment in an OSGi environment in two ways. The first approach is to simply use
the main library $XHIVE_HOME/lib/xhive.jar. Because this library is at the same time an OSGi
bundle, it can be deployed in an OSGi container easily.

The second approach is to use the libraries $XHIVE_HOME/lib/osgi/xhive-api.jar and
$XHIVE_HOME/lib/xhive-impl.jar. These libraries are OSGi bundles that decouple the xDB interfaces
(xhive-api.jar) from their actual implementation (xhive-impl.jar). The implementation bundle uses
OSGi Declarative Services to register itself as the implementation of the following API services:

• com.xhive.core.interfaces.XhiveDriverFactoryIf - a service for obtaining xDB XhiveDriverIf
implementations; and

• com.xhive.federationset.interfaces.XhiveFederationSetFactoryIf - a service for creating and
retrieving xDB federation sets.

Depending on the requirements, one of the above deployment options may be preferable over the other.

Note: The third-party libraries that are included in the xDB distribution are not OSGi-compatible. In
order to use xDB with OSGi, OSGi-enabled versions of these libraries must obtained and deployed
in the OSGi container. The Ant build script $XHIVE_HOME/bin/build.xml contains a simple
functionality for converting the core xDB dependencies into OSGi bundles - however, its use for
anything beyond executing the xDB sample applications is discouraged. Refer to the Import-Package
OSGi manifest headers in xhive.jar (or xhive-api.jar and xhive-impl.jar, respectively) for the exact
packages (and versions of thereof) that the xDB bundles depend on.

The xDB distribution comes with a simple OSGi sample application. The application source code
and configuration files can be found in the directories src/samples/osgi/ and src/samples/etc/osgi/,
respectively. Follow the instructions in $XHIVE_HOME/bin/build.xml on how to build and deploy
the sample application.

96 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/spring/XhiveDataSource.html
./../apidocs/com/xhive/spring/XhiveTransactionManager.html
./../apidocs/com/xhive/spring/XhiveSessionAccess.html
http://www.osgi.org/
./http://wiki.osgi.org/wiki/Declarative_Services

Creating Applications

Using xDB with JAAS
xDB provides user authentication, but also allows utilizing external authentication systems based on
Java Authentication and Authorization Service (JAAS), such as authentication for LDAP databases
or operating systems. JAAS offers a plug-in authentication module framework with modules for
different types of authentication systems.

JAAS handles the user authentication in combination with xDB. Once JAAS authentication is
successful, xDB automatically creates users and groups within xDB that match the authentication
information.

Using JAAS authentication with xDB requires implementing certain Java interfaces and configuring
the Pluggable Authentication Module (PAM), as follows:

• Specifying the PAM server connection in the JAAS configuration file or Java code.

• Enabling JAAS on the xDB driver object using the
driver.getSecurityConfig().enableJavaAuthentication(chosenConfigurationEntryName,
XhiveNameHandlerIf) method. Note: This method can only be called for drivers that connect
directly to the bootstrap file. The standard dedicated server included with xDB cannot be configured
for JAAS and cannot be used in combination with JAAS.

• Providing a custom implementation for the XhiveNameHandlerIf argument to map JAAS
user/group objects to xDB user names and group names.

• Connecting a session using the connect(databaseName, CallbackHandler) method.
The callback handler is a JAAS interface that allows passing authentication parameters to the
PAM server. Users can provide their own implementation or use standard classes, such as the
DialogCallbackHander class that the administration client uses for JAAS authentication.

The LDAP sample code included with xDB shows the interfaces that must be implemented and
the API calls that enable JAAS authentication.

Samples

../ldap/SampleClient.java

../ldap/XhiveServerWithLDAP.java

API documentation

com.xhive.core.interfaces.XhiveDriverIf

com.xhive.core.interfaces.XhiveSessionIf

Using the API with SSL
Configuring the server for SSL

When starting an xDB server through the XhiveDriverIf.startListenerThread() API, you must pass a
java.net.ServerSocket to listen to. To use SSL, pass a javax.net.ssl.SSLServerSocket object that has

EMC Documentum xDB Version 10.5 Manual 97

./../../src/samples/manual/../ldap/SampleClient.java
./../../src/samples/manual/../ldap/XhiveServerWithLDAP.java
./../apidocs/com/xhive/core/interfaces/XhiveDriverIf.html
./../apidocs/com/xhive/core/interfaces/XhiveSessionIf.html

Creating Applications

been created with any required options. The API can also be used for more complex features, like
using your own key manager, specifying cipher suites, and other more specialized SSL configuration.

Configuring the client for SSL

Configuring SSL on the client includes specifying a URL of the format xhives://host:port as the
argument in the XhiveDriverFactory.getDriver() method.

To do anything special, like using a custom trust manager, pass the same URL to the
XhiveDriverFactory.getDriver() method, and also pass a SocketFactory object to the
XhiveDriverIf.init(int cachePages, SocketFactory socketFactory) call.

98 EMC Documentum xDB Version 10.5 Manual

Chapter 7

Managing Documents in Applications

This chapter contains the following topics:

• Creating and managing documents
• Parsing XML documents
• Validating XML documents
• Storing XML documents
• DOM configuration settings
• Importing non-XML data
• Creating a document
• Retrieving documents and document parts
• Traversing XML documents
• Exporting XML documents
• Publishing XML documents
• XLink interfaces
• Using versioning
• Working with versioned documents
• Using searchable versions
• Using metadata on library children
• Using abstract schemas
• Using the APIs for XSL transformations

Creating and managing documents
xDB stores XML data as documents. A document is represented in the xDB API using the
org.w3c.dom.Document interface. This interface includes methods for creating an XML document,
updating XML documents, and for accessing document parts, such as elements, comments, and
attributes.

Parsing XML documents
To import an XML document from an external source, the document must be parsed. xDB supports
the DOM Load and Save specification, which provides standard ways for parsing and serializing

EMC Documentum xDB Version 10.5 Manual 99

Managing Documents in Applications

DOMs. For more informaton about the specification, see the W3C Document Object Model (DOM)
Level 3 Load and Save Specification.

The XhiveLibraryIf interface extends the DOMImplementationLS interface, which can be used
to create LSParser and LSSerializer objects. You can use the parseURI method of the LSParser
interface for parsing documents. LSParser objects must be created on the library where the parsed
documents are stored.

Example

The example below uses the parseURI method of the DOM Load/Save LSParser interface to parse a
document. When the document is parsed successfully, a DOM Document object is returned.
LSParser builder = rootLibrary.createLSParser();
Document firstDocument = builder.parseURI(new File(fileName).toURL().toString());

Note: An explicit appendChild is required to store a parsed document in the database, otherwise the
parsed document not stored.

Related topics
Storing XML documents

Validating XML documents

Samples
ParseDocuments.java

DOMLoadSave.java

API documentation
org.w3c.dom.as

com.xhive.dom.interfaces.XhiveLibraryIf

org.w3c.dom.ls.LSParser

org.w3c.dom.ls.LSSerializer

Parse with context
Complete documents can be parsed with context using the parseWithContext function on the
LSParser method, as in the following example:
LSParser parser = charterLib.createLSParser();
// Using (null, null, null) as arguments means the document will be completely empty
Document document = charterLib.createDocument(null, null, null);
// Other actions on document...
LSInput source = charterLib.createLSInput();
source.setSystemId("file:///c:/docs/document.xml");
parser.parseWithContext(source, document, LSParser.ACTION_REPLACE);

This involves more code than a simple parse, but has the advantage that you can first create the
document, then set indexes on it (at the ’Other actions on document...’ line), and then parse the data
on it. Indexing documents during parsing may bring some performance gains, especially for large
documents.

100 EMC Documentum xDB Version 10.5 Manual

http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407
./../../src/samples/manual/ParseDocuments.java
./../../src/samples/manual/DOMLoadSave.java
./../apidocs/org/w3c/dom/as/package-summary.html
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html
./../apidocs/org/w3c/dom/ls/LSParser.html
./../apidocs/org/w3c/dom/ls/LSSerializer.html

Managing Documents in Applications

Note:

Samples

ParseDocumentsWithContext.java

API documentation

org.w3c.dom.ls.LSParser

org.w3c.dom.ls.LSSerializer

com.xhive.dom.interfaces.XhiveNodeIf

Validating XML documents
The XML validation process validates an XML document and stores the DTD or XML schema
information as an abstract schema model (ASModel) in the catalog.

When a document is validated, xDB checks whether the catalog contains an abstract schema that
matches either the DTD or the XML schema. If so, validation uses the abstract schema instead of the
external DTD. Catalog checking can be turned off by setting the xhive-ignore-catalog parameter
LSParser object to true. When catalog checking is turned off, the validation process always creates a
new abstract schema for each validated document.
Note: If a system ID is used to refer to a DTD, the DTD is stored for every document that is
parsed. Documents using only a system ID can be parsed without storing the schema by setting the
xhive-ignore-catalog parameter to false.

Examples

By default the validate configuration parameter is disabled and must be enabled to parse a file with
validation. The following example describes how to enable parsing with validation.
LSParser parser = charterLib.createLSParser();
parser.getDomConfig().setParameter("validate", Boolean.TRUE);
Document firstDocument = parser.parseURI(new File(fileName).toURL().toString());

If the parsed document contains a reference to a DTD, the DTD is stored as an ASModel within the
library catalog.

The XhiveCatalogIf interface in the com.xhive.dom.interfaces package contains several methods for
updating and querying abstract schema models. The following example retrieves a catalog and the
abstract schema from the root library.
// retrieve the catalog of the "UN Charter" library
XhiveCatalogIf unCharterCatalog = charterLib.getCatalog();

// get the abstract schema models that exist in the root library catalog
// do not include models from locations higher in the tree
Iterator<ASModel> iter = unCharterCatalog.getASModels(false);
while (iter.hasNext()) {
ASModel asModel = iter.next();
System.out.println(" asModel = " + asModel.getLocation());

}

EMC Documentum xDB Version 10.5 Manual 101

./../../src/samples/manual/ParseDocumentsWithContext.java
./../apidocs/org/w3c/dom/ls/LSParser.html
./../apidocs/org/w3c/dom/ls/LSSerializer.html
./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html

Managing Documents in Applications

Samples
ParseDocumentsWithValidation.java

ParseDocumentsWithContext.java

API documentation
com.xhive.dom.interfaces.XhiveLibraryIf

org.w3c.dom.ls.LSParser

Normalizing XML documents
xDB includes the normalizeDocument function for normalizing XML documents in the
XhiveDocumentIf interface. The complete list of normalization options can be found in the Javadoc
documentation for the DOMConfiguration interface.

Examples

The following code example describes how to normalize a document using the DOMConfiguration
interface.
DOMConfiguration config = ((XhiveDocumentIf)document).getDomConfig();
config.setParameter("validate", Boolean.TRUE);
config.setParameter("error-handler", new SimpleDOMErrorPrinter());
document.normalizeDocument();

Normalizing a document with validation requires enabling the "validate" parameter. The
normalizeDocument method does not throw any exceptions. An error handler can be set during
normalization.

The "schema-location" parameter can be used to validate against a different schema. Setting a
schema location also requires setting the schema type. The following code example describes how to
set a schema-location.
config.setParameter("schema-type", "http://www.w3.org/2001/XMLSchema");
config.setParameter("schema-location", "personal.xsd");

If the schema-location is set, the validation process first searches for a corresponding XML schema in
the catalog. If no schema is found, the validation process searches for a schema in the file system.
During document parsing, the schema-location is resolved relative to the document URI. The
document URI is not available during validation. A full path must be set if a document is validated
against a schema located in the file system.

Setting PSVI information
If the xhive-psvi parameter in the LSParser object is enabled, PSVI information can be set when a
document is parsed or normalized. If a document is parsed without validation, PSVI information
can be set during validation.

Related topics
Post Validation Schema Infoset (PSVI)

Accessing PSVI information

102 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/ParseDocumentsWithValidation.java
./../../src/samples/manual/ParseDocumentsWithContext.java
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html
./../apidocs/org/w3c/dom/ls/LSParser.html

Managing Documents in Applications

Samples
ValidateDocumentWithXMLSchema.java

API documentation
com.xhive.dom.interfaces.XhiveDocumentIf

org.w3c.dom.DOMConfiguration

Storing XML documents
The appendChild() method is used to store XML documents in an xDB database. This method
requires a handle to the library where the document is going to be stored.

The following example shows how to store a document in the root library of the sample database:
XhiveLibraryIf rootLibrary = united_nations_db.getRoot();
rootLibrary.appendChild(firstDocument);

Alternatively, documents can be stored using the insertBefore() method, which is also a standard
DOM method. In the following example, firstDocument specifies the name of the new document
and secondDocument specifies the name of the existing document in front of which the new
document is stored.
rootLibrary.insertBefore(secondDocument, firstDocument);

Where

Samples
StoreDocuments.java

API documentation
org.w3c.dom.Node

DOM configuration settings
The DOM level 3 DOMConfiguration interface is used to set Boolean, string, and user object
parameters. The Boolean configuration settings and string parameters of a document are stored in the
database. The normalizeDocument method of the XhiveDocumentIf interface uses these settings.
The XhiveDocumentIf, LSParser and LSSerializer objects each have their own configuration object.

The options are listed in the JavaDOC documentation of the DOMConfiguration interface, and the
getDomConfig() method of the LSParser and LSSerializer objects.

The following code example shows how to set a Boolean parameter and user object parameter:
LSParser parser = library.createLSParser();
XhiveDocumentIf document =

(XhiveDocumentIf) parser.parseURI(new File(fileName).toURL().toString());
DOMConfiguration config = document.getDomConfig();
config.setParameter("validate", Boolean.TRUE);

EMC Documentum xDB Version 10.5 Manual 103

./../../src/samples/manual/ValidateDocumentWithXMLSchema.java
./../apidocs/com/xhive/dom/interfaces/XhiveDocumentIf.html
./../apidocs/org/w3c/dom/DOMConfiguration.html
./../../src/samples/manual/StoreDocuments.java
./../apidocs/org/w3c/dom/Node.html

Managing Documents in Applications

config.setParameter("error-handler", new SimpleDOMErrorPrinter());

The xDB default configuration settings conform to the default settings defined by the Document Object
Model (DOM) Level 3 Core Specification and the Document Object Model (DOM) Level 3 Load and
Save Specification. A supported parameter can be set to another value.

The following code example shows how to test whether a configuration supports a Boolean parameter
value:
config.canSetParameter("validate", Boolean.TRUE);

Deviations from specification

In xDB, the LSParser default value is set to "Boolean.FALSE". According to the LSParser
object specification, the default value for the "element-content-whitespace" Boolean parameter is
"Boolean.TRUE". Documents that are parsed and stored with this setting can have many text nodes
containing only spaces. These additional nodes need more space on the disk and can adversely affect
query and validation performance.

Additional parameters

xDB adds some parameters for use by LSParser and/or Document objects.

Table 13 Additional parameters

Parameter name Interface Default value Description

xhive-ignore-catalog XhiveDocumen-
tIf, LSParser

Boolean.FALSE Specifies whether or not to ignore
the corresponding DTD’s and XML
schemas in the catalog during validated
parsing.

xhive-store-schema XhiveDocumen-
tIf, LSParser

Defaults to the
value of the
configuration
setting "validate"
(Boolean.TRUE
or
Boolean.FALSE).
Can be overridden
after setting
"validate".

Specifies whether or not to store the
corresponding DTD’s or XML schemas
in the catalog during validated parsing.

xhive-psvi LSParser Boolean.FALSE Specifies whether to store PSVI
information for elements and attributes,
and enables access to PSVI information
and XQuery data type support.

xhive-store-schema-
only-internal-subset

LSParser Boolean.FALSE Specifies whether to store only the
internal subset of the document and no
external subsets. This parameter only
applies in conjunction with DTDs.

xhive-predefined- entities LSParser Boolean.FALSE Specifies whether to store predefined
entities as entity reference nodes.

104 EMC Documentum xDB Version 10.5 Manual

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/

Managing Documents in Applications

Parameter name Interface Default value Description

xhive-character-
references

LSParser Boolean.FALSE Specifies whether to store character
references as entity reference nodes. If
this parameter is set to Boolean.TRUE,
the xDB creates entity reference nodes
names that do not comply with the
DOM recommendation.

xhive-raw-attributes LSParser,
LSSerializer

Boolean.FALSE Specifies whether to store the raw
attribute value when parsing or
serializing a document.

xhive-insert-xmlbase LSParser,
LSSerializer

Boolean.FALSE

When parsing a document, this
parameter specifies whether to set the
xml:base attribute for the top level
element read from an external parsed
entity. Setting the xml:base attribute
ensures that the Node.getBaseURI()
method returns correct results.

When serializing a document, this
parameter specifies whether to insert
xml:base attributes when external
parsed entities are expanded. This
parameter only applies when the
"entities" option is set to false.

xhive-sync-features LSParser Boolean.FALSE Specifies whether the parameter values
of the XhiveDocumentIf interface
are synchronized with the LSParser
interface parameter values. The
"xhive-psvi" and "schema-location"
values are always synchronized.

xhive-schema-ids Read-only
parameter of the
XhiveDocumentIf
interface.

null Specifies the identification of XML
schema ids used by the document.

xhive-node-callback LSParser,
XhiveDocumentIf

null

Enables applications to call a
user-defined instance of the
XhiveNodeCallbackIf interface
before importing or constructing text
or CDATASection nodes. The function
specifies whether the nodes should be
compressed.

Compression should not be used for all
text or CDATASection nodes because
the compressed text representation
header adds additional overhead and
the compression algorithms consumes
CPU time. xDB stores text or the

EMC Documentum xDB Version 10.5 Manual 105

Managing Documents in Applications

Parameter name Interface Default value Description

CDATASection in a compressed
representation only if the compressed
text size is smaller than the original text
size.

xhive-security-manager LSParser null Sets an instance of the
org.apache.xerces.util.SecurityManager
class to be used during parsing. When
parsing untrusted XML, this can
prevent malicious documents from
using excessive resources.

Samples
DOMLoadSave.java

TextCompression.java

API documentation
org.w3c.dom.DOMConfiguration

org.w3c.dom.ls.LSParser

org.w3c.dom.ls.LSSerializer

com.xhive.dom.interfaces.XhiveDocumentIf

Importing non-XML data
xDB can import data from non-XML files.

• The com.xhive.util.interfaces.XhiveSQLDataLoaderIf can import data from JDBC-compliant
relational databases.

• The com.xhive.util.interfaces.XhiveCSVFileLoaderIf interface can import data in CSV format.
For more information, see the API documentation.

Note: The XhiveSqlLoaderIf interface is deprecated. Use the XhiveSQLDataLoaderIf and
XhiveCSVFileLoaderIf interfaces instead.

CSV Import Example

The example code below uses XhiveCSVFileLoaderIf to import data in CSV format into xDB, and
stores the data as an XML document.

// get the XhiveCSVFileLoader
FileInputStream input = new FileInputStream(fileName);
XhiveCSVFileLoaderIf loader = XhiveDriverFactory.getDriver().getCSVFileLoader(input);

// Set the options to load the data with
loader.setSeparator(’,’);

106 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/DOMLoadSave.java
./../../src/samples/manual/TextCompression.java
./../apidocs/org/w3c/dom/DOMConfiguration.html
./../apidocs/org/w3c/dom/ls/LSParser.html
./../apidocs/org/w3c/dom/ls/LSSerializer.html
./../apidocs/com/xhive/dom/interfaces/XhiveDocumentIf.html

Managing Documents in Applications

loader.setEscape(’\\’);
loader.setEnclose(’"’);
loader.setHeadersIncl(true);
loader.setRowName("member");
loader.setColumnNames(new String[]{"name", "admission_date", "additional_note"});
loader.setColumn2Attribute(new boolean[] { false, false, false });

// Create a document that will serve as target for the data
Document unMembersDoc = rootLibrary.createDocument(null, "UN_members", null);

// Set document(-element) as the target for the load
loader.setTargetDocument(unMembersDoc, unMembersDoc.getDocumentElement());

// Perform the actual load
loader.loadCSVData();

From the following CSV data:
"Member", "Date of Admission", "Additional Notes"
"Iceland",19 Nov. 1946, ""
"India",30 Oct. 1945, ""
"Indonesia",28 Sep. 1950, "By letter of 20 January ..."
"Iran (Islamic Republic of)",24 Oct. 1945, ""

the example code will generate the following XML document:
<UN_members>
<member>
<name>Iceland</name>
<admission_date>19 Nov. 1946</admission_date>
<additional_note></additional_note>
</member>
<member>
<name>India</name>
<admission_date>30 Oct. 1945</admission_date>
<additional_note></additional_note>
</member>
<member>
<name>Indonesia</name>
<admission_date>28 Sep. 1950</admission_date>
<additional_note>By letter of 20 January 1965...</additional_note>
</member>
<member>
<name>Iran (Islamic Republic of)</name>
<admission_date>24 Oct. 1945</admission_date>
<additional_note></additional_note>
</member>
</UN_members>

Samples

StoreRelationalData.java

EMC Documentum xDB Version 10.5 Manual 107

./../../src/samples/manual/StoreRelationalData.java

Managing Documents in Applications

API documentation

com.xhive.util.interfaces.XhiveSQLDataLoaderIf

com.xhive.util.interfaces.XhiveCSVFileLoaderIf

Creating a document
To create a document:
1. Obtain a handle to a DOM implementation with rootLibrary because XhiveLibraryIf extends

DOMImplementation, as follows:

DOMImplementation impl = rootLibrary;

2. Create a DocumentType object and a Document object using the createDocument() method in
org.w3c.dom.DOMImplementation, as follows:

DocumentType docType = impl.createDocumentType("typeName", "publicId", "systemId");
Document eventsDocument= impl.createDocument(null, "events", docType);

Because no namespaceURI is used, the first parameter can be left empty. The second parameter
of the createDocument() method, events, is the tag name of the root element. The third
parameter sets the docType of the new document.

3. Obtain a handle to the root element of the newly created document, as follows:

Element rootElement = eventsDocument.getDocumentElement();

4. Add document parts using standard DOM methods.

These methods are located in the org.w3c.dom.Document interface. The most commonly
used methods are:

• createAttribute()

• createComment()

• createElement()

• createTextNode()

Examples

The following code adds a comment, an element named event with attribute occurrence, and the
text value "UNICEF, Executive Board, annual session" to the new document:
// add a comment to the document before the root element
Comment comment = eventsDocument.createComment("this document contains UN events");
eventsDocument.insertBefore(comment, rootElement);

// add a new element to root element
Element eventElement = eventsDocument.createElement("event");
rootElement.appendChild(eventElement);

// add text value to the element
Text eventText =

eventsDocument.createTextNode("UNICEF, Executive Board, annual session");

108 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/util/interfaces/XhiveSQLDataLoaderIf.html
./../apidocs/com/xhive/util/interfaces/XhiveCSVFileLoaderIf.html

Managing Documents in Applications

eventElement.appendChild(eventText);

// add an attribute to the element
eventElement.setAttribute("occurrence", "year");

Add date element with the value "4-8 June, 2001" to the event element, as follows:
// add a new element to event
Element dateElement = eventsDocument.createElement("date");
eventElement.appendChild(dateElement);

// add text value to the date element
Text dateText = eventsDocument.createTextNode("4-8 June, 2001");
dateElement.appendChild(dateText);

The resulting XML document looks as follows:
<!DOCTYPE typeName PUBLIC "publicId" "systemId">
<!--this document contains UN events-->
<events>
<event occurrence="year">

UNICEF, Executive Board, annual session
<date>4-8 June, 2001</date>

</event>
</events>

Use the appendChild() or insertBefore() method to store the document in the database. The
following code uses appendChild() to store the document in the root library:
rootLibrary.appendChild(eventsDocument);

Samples

CreateDocument.java

API documentation

org.w3c.dom.Document

org.w3c.dom.DOMImplementation

Retrieving documents and document parts
xDB offers various ways to retrieve documents and document parts from the database. For example,
documents can be retrieved using DOM operations, document ID, document name, XQuery, indexing,
XPointer and XPath.

Samples

RetrieveDocuments.java

RetrieveDocumentParts.java

EMC Documentum xDB Version 10.5 Manual 109

./../../src/samples/manual/CreateDocument.java
./../apidocs/org/w3c/dom/Document.html
./../apidocs/org/w3c/dom/DOMImplementation.html
./../../src/samples/manual/RetrieveDocuments.java
./../../src/samples/manual/RetrieveDocumentParts.java

Managing Documents in Applications

API documentation
org.w3c.dom.Node

org.w3c.dom.Element

com.xhive.dom.interfaces.XhiveLibraryChildIf

com.xhive.dom.interfaces.XhiveLibraryIf

com.xhive.dom.interfaces.XhiveNodeIf

Using DOM operations
The DOM specifications include some methods for retrieving documents or document parts. These
methods are part of the org.w3c.dom.Node interface. Elements within the DOM are linked as
parent-child, or siblings.

Some DOM operations are described in DOM operations for retrieving documents, page 110.

Table 14 DOM operations for retrieving documents

Interface Methods Description

org.w3c.dom.Node getFirstChild(), getLastChild(),
getPreviousSibling(),
getChildNodes()

Methods for retrieving
document children.

getNextSibling(), hasChildNodes() Methods for retrieving
specific document parts.

org.w3c.dom.Element getAttribute(), getAttributeNode() Methods for retrieving
element attributes within
a document.

com.xhive.dom.interfaces.XhiveNodeIf getFirstChildByType(),
getFirstChildElementByName()

Methods for retrieving
document children by
type and name. The
interface extends the
functionality of the
org.w3c.dom.Node
interface.

Note: Retrieving all children of a node using the getChildNodes() method can be slow. The
getNextSibling() method is a faster way to iterate across child nodes

Examples

The following example code checks whether a library has any children and counts the number
of children.
int nrChildren = 0;
Node n = charterLib.getFirstChild();
while(n != null) {
nrChildren++;
n = n.getNextSibling();

}

The following example code displays all elements within an XML document.

110 EMC Documentum xDB Version 10.5 Manual

./../apidocs/org/w3c/dom/Node.html
./../apidocs/org/w3c/dom/Element.html
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryChildIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html

Managing Documents in Applications

public static void showChildren (Node theNode, int level) {

// some output formatting
String indentation = "";
for (int i=0; i<level; i++) {
indentation += "\t";

}

Node n = theNode.getFirstChild();

int j = 1;

// as long as there are children...
while(n != null) {

// and child is of type ’element’...
if (n.getNodeType() == org.w3c.dom.Node.ELEMENT_NODE) {
// show the element...
System.out.println(indentation + "child " + j++ + " is a " + n.getNodeName());

// and get the children of this element (recursively)
showChildren(n, level+1);

}

// get next child
n = n.getNextSibling();

}
}

Using document ID
xDB automatically assigns an identifier to a new document. This identifier is unique within the context
of a library. The get() method in the com.xhive.dom.interfaces.XhiveLibraryIf interface retrieves
documents by identifier.

Example

The following code example retrieves a document by identifier using the get() method.
int anId = 10;
Node child = charterLib.get(anId);
System.out.println("document with ID = " + anId + " in \"UN Charter\"

has name: " + ((XhiveLibraryChildIf)child).getName());

Using document name
Although every document has an identifier, it can be more convenient to retrieve documents by their
name. Document names are optional but must be unique within the context of the library in which the
document is stored. The get() method in the com.xhive.dom.interfaces.XhiveLibraryIf interface
retrieves documents by name.

Example

The following code example retrieves a document by name using the get() method.

EMC Documentum xDB Version 10.5 Manual 111

Managing Documents in Applications

String documentName = "UN Charter - Chapter 2";
Document docRetrievedByName = (Document)charterLib.get(documentName);

Using XQuery
XQueries can be run on libraries and documents using the executeXQuery(String query) method in
the XhiveLibraryChildIf interface. The method returns a result sequence and each result element is
an instance of the XhiveXQueryValueIf object.

Example

The following example code executes a query that retrieves all chapter titles of a document.
Iterator result = charterLib.executeXQuery("//chapter/title");
while (result.hasNext()) {
XhiveXQueryValueIf value = (XhiveXQueryValueIf) result.next();
// We know this query will only return nodes.
Node node = value.asNode();
// Do something with the node ...

}

Samples
XQuery.java

API documentation
com.xhive.dom.interfaces.XhiveLibraryChildIf

com.xhive.query.interfaces

Using indexes
Using indexes can dramatically improve query performance. For more information about indexes,
see Indexes, page 150.

Using XPointer with library path
The executeFullPathXPointerQuery() method in the
com.xhive.dom.interfaces.XhiveLibraryChildIf interface retrieves documents by library path
and document name.

Examples

The following example code retrieves and displays the document titled UN Charter - Chapter 2
from the UN Charter library.
Iterator docsFound = rootLibrary.executeFullPathXPointerQuery(
"/UN Charter/UN Charter - Chapter 2");
Document docRetrievedByFPXPQ = (Document)docsFound.next();
System.out.println(docRetrievedByFPXPQ.toString());

112 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/XQuery.java
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryChildIf.html
./../apidocs/com/xhive/query/interfaces/package-summary.html

Managing Documents in Applications

The following example code specifies a relative path to retrieve the document.
// newLib is a sub library of "UN Charter"

// execute the FullPathXPointerQuery relative to the new sub library
docsFound = newLib.executeFullPathXPointerQuery("../UN Charter - Chapter 3");
docRetrievedByFPXPQ = (Document)docsFound.next();
System.out.println(docRetrievedByFPXPQ.toString());

When the document name is not specified, the executeFullPathXPointerQuery() method
returns a library, as described in the following example.
Iterator librariesFound = rootLibrary.executeFullPathXPointerQuery("/UN Charter");
XhiveLibraryIf charterLib = (XhiveLibraryIf)librariesFound.next();

Using an XPointer expression
If the library path contains an XPointer expression, the expression can be used to retrieve parts of a
document.

The input query uses the following syntax:
/libname[/libname...][/docname|/id:docid[##versionId]][#xpointer_query]

Optional parameters are enclosed in [].

Adding an XPointer expression to the query string allows using the executeFullPathXPointerQuery()
method to retrieve parts of an XML document.

Examples

The following example retrieves all title elements from the Un Charter - Chapter 5 sample
document in the UN Charter library.
String sampleLibName = "/UN Charter";
String sampleDocName = "UN Charter - Chapter 5";
String sampleDocPath = sampleLibName + "/" + sampleDocName;
String queryXPointer = "#xpointer(/descendant::title)";

Iterator resultNodes = rootLibrary.executeFullPathXPointerQuery(
sampleDocPath + queryXPointer);
while (resultNodes.hasNext()) {
Node resultNode = (Node)resultNodes.next();
System.out.println(resultNode.getFirstChild().getNodeValue());

}

The following example code retrieves the first paragraph of UN article #68 without specifying which
document contains this article.
queryXPointer = "#xpointer(/descendant::article[@number=’68’]/para[1])";

// note that we only specify the library path and not the document name:
resultNodes = rootLibrary.executeFullPathXPointerQuery(sampleLibName + queryXPointer);
while (resultNodes.hasNext()) {
Node resultNode = (Node)resultNodes.next();
System.out.println(resultNode.getFirstChild().getNodeValue());

}

EMC Documentum xDB Version 10.5 Manual 113

Managing Documents in Applications

The executeFullPathXPointerQuery() method can retrieve a specific document version by adding ##
followed by a version ID or label after the document name. The method first evaluates the version
identifier as a label. If a version with that label cannot be found, the version identifier is treated
as a version ID.

The following code example retrieves all title elements for version 1.3 of the UN Charter -
Chapter 5 sample document in the UN Charter library .
String sampleLibName = "/UN Charter";
String sampleDocName = "UN Charter - Chapter 5";
String sampleDocPath = sampleLibName + "/" + sampleDocName;
String versionIdentifier = "##1.3";
String queryXPointer = "#xpointer(/descendant::title)";

Iterator resultNodes = rootLibrary.executeFullPathXPointerQuery(
sampleDocPath + versionIdentifier + queryXPointer);
while (resultNodes.hasNext()) {
Node resultNode = (Node)resultNodes.next();
System.out.println(resultNode.getFirstChild().getNodeValue());

}

For more information about XPointer queries, see Using XPath and XPointer, page 114.

Using XPath and XPointer
Note: The information in this topic is mostly for backward compatibility. Please use XQuery
whenever possible.

Using XPath
For XPath queries, you can use the executeXPathQuery(...) methods in the XhiveNodeIf interface.
Optionally, you can supply a query context that contains namespace declarations, variable and function
bindings, and an absolute root.

The results of an XPath query are represented by the XhiveQueryResultIf interface. For example, the
following code executes a query that retrieves all chapter titles of a document.
XhiveQueryResultIf result = charterLib.executeXPathQuery("descendant::chapter/title");

The XhiveQueryResultIf interface includes methods for extracting different types of information
from a query result. The result can be of one of several types: a string, a Boolean, a number or a
location set. A location set is a collection of nodes, points, and ranges. For information about the rules
that determine the outcome of conversion, refer to the XPath specifications.

To convert a query result, you can use the following methods to extract different result types:

• getStringValue() - Retrieves the string value of a result.
• getBooleanValue() - Retrieves the Boolean value of a result.
• getNumberValue() - Retrieves the numeric value of a result.
• getLocationSetValue() - Retrieves the location set value of a result.

The following code processes the results returned as a location set.
if (result != null){
if (resultType == XhiveQueryResultIf.LOCATIONSET){

114 EMC Documentum xDB Version 10.5 Manual

Managing Documents in Applications

XhiveLocationIteratorIf resultNodeSet = result.getLocationSetValue();
XhiveLocationIf resultNode;

while (resultNodeSet.hasNext()) {
resultNode = resultNodeSet.next();
if (resultNode.getLocationType() == Node.ELEMENT_NODE) {

System.out.println(" " + ((Node)resultNode).getFirstChild().getNodeValue());
}

}
}

}
Note: xDB throws an XhiveException if the getLocationSetValue() method is called on a result that
is not a location set.

Using XPointer

The XPointer XML Pointer Language is based on the XPath XML Path Language. XPointer supports
addressing the internal structures of XML documents to traverse a hierarchical document structure and
select parts of the hierarchy based on various properties. For a complete and up-to-date description
of XPointer, refer to the XML Pointer Language (XPointer) Version 1.0 documentation at the W3C
website.

XPointer queries can be executed in a similar way as XPath queries:
XhiveQueryResultIf result = charterLib.executeXPointerQuery(
"xpointer(/chapter/article/para/list/item[1]/para)");

The result of an XPointer query has to be a non-empty location set or an exception is thrown.

Working with namespaces

Before a namespace can be used in an XPath query, the namespace must be declared in an
XhiveXpathContextIf object. The object can be supplied using the addNamespaceBinding(...)
method when executing the query, as described in the following code example.
XhiveXPathContextIf xpathContext = nsDocument.createXPathContext();

// Add a namespace declaration for the xsl-namespace
// Note that the prefix does not have to match
xpathContext.addNamespaceBinding("ns", "http://www.w3.org/1999/XSL/Transform");

// Execute the query
XhiveQueryResultIf result = nsDocument.executeXPathQuery(
"descendant::ns:template/@match", xpathContext);

Note: XhiveXPathContextIf objects become invalid after the end of a commit, checkpoint, or
rollback transaction to prevent the context operating on invalid data. The view of the database
changes after the beginning of a new transaction. If a context is used after a transaction has ended
an XhiveException.INVALID_CONTEXT exception is thrown.

In XPointer, the namespace declaration is included in the query. The format of the declaration is
defined in the XPointer specifications:
theQuery = "xmlns(ns=http://www.w3.org/1999/XSL/Transform) xpointer(
descendant::ns:template/@match)";

EMC Documentum xDB Version 10.5 Manual 115

http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/WD-xptr#ns-context

Managing Documents in Applications

Samples
XPath.java

XPathXPointerNamespaces.java

API documentation
com.xhive.query.interfaces

com.xhive.xpath.interfaces.XhiveXPathContextIf

com.xhive.dom.interfaces.XhiveNodeIf

Traversing XML documents
Traversal can be used to perform an action, such as applying a change, on some nodes. A traversal
moves through a tree processing every node it encounters.

In xDB, you can traverse XML documents using:

• DOM Traversal, page 116
• Function objects, page 119

Samples
DomTraversal.java

MyNumberFinder.java

FunctionObjects.java

API documentation
org.w3c.dom.traversal

com.xhive.dom.interfaces.XhiveNodeIf

com.xhive.dom.interfaces.XhiveFunctionIf

Using DOM traversal
The DOM Level 2 Traversal specification specifies operations for traversing XML documents in the
org.w3c.dom.traversal package. The package defines two different types of traversal:

• NodeIterator
This type traverses a flat representation of an XML document.

• TreeWalker
This type traverses a tree representation of an XML document.

For example, the simple XML document
<A>
some text
<C>
<D>1st child of C</D>

116 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/XPath.java
./../../src/samples/manual/XPathXPointerNamespaces.java
./../apidocs/com/xhive/query/interfaces/package-summary.html
./../apidocs/com/xhive/xpath/interfaces/XhiveXPathContextIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html
./../../src/samples/manual/DomTraversal.java
./../../src/samples/manual/MyNumberFinder.java
./../../src/samples/manual/FunctionObjects.java
./../apidocs/org/w3c/dom/traversal/package-summary.html
./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveFunctionIf.html

Managing Documents in Applications

<E>2nd child of C</E>
</C>
<F>some more text</F>

is associated with the flat representation
A B C D E F

and the tree representation.

Figure 4 XML document tree

The interfaces and methods used for traversal are described in the Traversal interfaces and methods,
page 117 table.

Table 15 Traversal interfaces and methods

Interface Methods Description

NodeIterator nextNode(), previousNode() Methods for retrieving the next and previous node
in a traversal.

TreeWalker nextNode(), previousNode(),
parentNode(), firstChild(),
lastChild(), previousSibling(),
nextSibling()

Methods for retrieving the next and previous node or
sibling, and first and last child in a traversal.

NodeFilter acceptNode() Specifies whether a node is accepted or rejected.
This interface is used by the NodeIterator and
TreeWalker interfaces. This method returns one of
the following values:

• FILTER_ACCEPT - The current node is
included.

• FILTER_SKIP - The current node is not
accepted, but the children of the current node
are considered for acceptance.

• FILTER_REJECT - The current node is
not accepted. For TreeWalker methods,
the children of the current node are not
considered for inclusion.

Examples

The following sampleFilter() code example uses the NodeFilter interface. The implementation
skips all title elements and rejects all list elements:
public class SampleFilter implements NodeFilter {

EMC Documentum xDB Version 10.5 Manual 117

Managing Documents in Applications

public short acceptNode (Node n) {
if (n.getNodeType() == Node.ELEMENT_NODE) {
Element elem = (Element) n;

if (elem.getNodeName().equals("title")) {
return FILTER_SKIP;

}

if (elem.getNodeName().equals("list")) {
return FILTER_REJECT;

}
}

return FILTER_ACCEPT;
}

}

Creating a NodeIterator object that uses the filter from the sampleFilter() example requires
getting a handle to the DocumentTraversal implementation, as follows:
DocumentTraversal docTraversal = XhiveDriverFactory.getDriver().getDocumentTraversal();

The createNodeIterator() method is used to create a NodeIterator object and can use the
following parameters:

• root - The node at which to start the traversal.

• whatToShow - The flag specifying which node types to include.

• filter - The filter to use. The value can be set to null if no filter is used.

• entityReferenceExpansion - A flag specifying whether to expand entity reference nodes.

The following example code traverses the first chapter of a document using a NodeIterator object
and without a NodeFilter object.
System.out.println("\n#NodeIterator without a NodeFilter:");
NodeIterator iter = docTraversal.createNodeIterator(resultGetDocument,

NodeFilter.SHOW_ALL,
null,
false);

Node node;

while ((node = iter.nextNode()) != null){
System.out.println(" Node Name = " + node.getNodeName());

}

To restrict the traversal and not include title or list elements, change the second line of the
previous example to:
NodeIterator iter = docTraversal.createNodeIterator(resultGetDocument,

NodeFilter.SHOW_ALL,
sampleFilter,
false);

The following code instantiates the sampleFilter object:
NodeFilter sampleFilter = new SampleFilter();

118 EMC Documentum xDB Version 10.5 Manual

Managing Documents in Applications

Traversing a document using a TreeWalker object with a sampleFilter object instead of a
NodeIterator skips the child nodes of the list element, as described in the following example code.
TreeWalker walker = docTraversal.createTreeWalker(resultGetDocument,
NodeFilter.SHOW_ALL,
sampleFilter,
false);

while ((node = walker.nextNode()) != null){
System.out.println(" Node Name = " + node.getNodeName());

}

Related topics

Retrieving documents using DOM operations

Traversing using function objects
Function objects are an elegant way to traverse documents because they enable separation
and reusing traversal and function methods. A function object is a class that implements the
com.xhive.dom.interfaces.XhiveFunctionIf interface. Define the following methods in a
function object class:

• isDone(), which indicates whether the traversal can be terminated.
• process(), which contains the code for the actual processing of the node.
• test(), which indicates whether the node has to be processed with process().

To create a function object that only processes Element nodes with an attribute number, you can
declare the test() method as follows:
public boolean test (Node node){
return node.getNodeType() == Node.ELEMENT_NODE && (
(Element)node).hasAttribute("number");
}

The test() method is called for every node and determines whether to process the node.

The process() method of the function object class defines what has to happen with the nodes that
pass the test as defined in test():
public void process (Node node){
String indentation = "";
String elementName = ((Element)node).getTagName();
if (elementName.equals("article")) {
indentation = " ";

}

System.out.println(indentation + elementName + " " + (
(Element)node).getAttribute("number"));
}

The isDone() method, which the traversal method calls automatically, checks if the traversal has
to continue or can terminate. In the example, all nodes have to be processed, so isDone() always
returns false:
public boolean isDone (Node node){

EMC Documentum xDB Version 10.5 Manual 119

Managing Documents in Applications

return false;
}

You could, for example, use the isDone() method to limit the number of processed nodes to a
specified number:
public boolean isDone (Node node){

return nrResults == maxNrResult;

// nrResults is incremented in process()
}

The com.xhive.dom.interfaces.XhiveNodeIf interface contains the traversal methods for
function objects. The following traversal methods are available:

• traverseAllNodesDocumentOrder() traverses the current node and all descending nodes,
including attributes in document order.

• traverseAncestors() traverses the ancestors of the current node.
• traverseAttributesDocumentOrder() traverses the attributes of the current node and its
descending nodes in document order.

• traverseBreadthFirst() traverses the current node and all its descendants in breadth-first order.
• traverseChildren() traverses the children of the current node.
• traverseDocumentOrder() traverses the current node and all its descendants in document order.
• traverseReverseDocumentOrder() traverses the current node and all its descendants in
reverse document order.

The following example uses the function MyNumberFinder to traverse all nodes within a library
in document order and breadth-first:
MyNumberFinder numberFinder = new MyNumberFinder();

System.out.println("# traverse the charter library with traverseDocumentOrder:");
charterLib.traverseDocumentOrder(numberFinder);

System.out.println("# traverse the charter library with traverseBreadthFirst:");
charterLib.traverseBreadthFirst(numberFinder);

You could also use the same function object to traverse a single document in various ways:
Document chapter5Document = (Document)charterLib.get("UN Charter - Chapter 5");

System.out.println("# traverse \"UN Charter - Chapter 5\"
with traverseDocumentOrder:");
((XhiveDocumentIf)chapter5Document).traverseDocumentOrder(numberFinder);

System.out.println("# traverse \"UN Charter - Chapter 5\"
with traverseReverseDocumentOrder:");
((XhiveDocumentIf)chapter5Document).traverseReverseDocumentOrder(numberFinder);

Exporting XML documents
DOMs, such as a string or an output stream, can be serialized using the toXml(...) method in the
XhiveNodeIf interface, or a LSSerializer DOM Load/ Save object, as described in the following
example.

120 EMC Documentum xDB Version 10.5 Manual

Managing Documents in Applications

LSSerializer writer = charterLib.createLSSerializer();
writer.getDomConfig().setParameter("format-pretty-print", Boolean.TRUE);
String output = writer.writeToString(firstDocument);

Samples

DOMLoadSave.java

API documentation

com.xhive.dom.interfaces.XhiveNodeIf

org.w3c.dom.ls.LSSerializer

Publishing XML documents

The com.xhive.util.interfaces package provides the following interfaces for publishing XML
documents from xDB:

• XhiveTransformerIf for publishing using XSLT
• XhiveFormatterIf for publishing to PDF format

XSLT

xDB contains an XSL Transformation (XSLT) engine. XSLT can transform an XML source tree into
any required result tree and publish XML content in (X)HTML, PDF and other formats. For more
information about XSLT, see the W3C website.

Publishing from xDB with XSLT requires an XML and XSL document within a Java application that
uses the transformToString(), transformToStream(), or transformToDocument() method. Both
the XML and XSL documents are stored in the database. The output can be another XML document,
or a document of any other format.

The XSL document, which is actually an XML file, specifies the transformations that produce the
desired output.

Note: When parsing XSL documents, the XhiveLibraryIf.PARSER_NAMESPACES_ENABLED
option value must be TRUE. Otherwise an exception is thrown during transformation of the XML
document.

PDF

XML documents can be published to PDF format with the formatAsPDFToStream() method in the
com.xhive.util.interfaces.XhiveFormatterIf interface. This method can format either an XSL-FO

EMC Documentum xDB Version 10.5 Manual 121

./../../src/samples/manual/DOMLoadSave.java
./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html
./../apidocs/org/w3c/dom/ls/LSSerializer.html
http://www.w3.org/TR/xslt

Managing Documents in Applications

document or an XML document as a PDF string. Transforming an XML document also requires an
XSL document.

Samples

Publish2HTML.java

Publish2PDF.java

API documentation

com.xhive.util.interfaces.XhiveTransformerIf

com.xhive.util.interfaces.XhiveFormatterIf

XLink interfaces
The XLink information is accessible through the DOM API because it is stored as attributes. The
com.xhive.dom.xlink.interfaces package provides methods and interfaces that are more convenient
and easier to use. A selection of these methods is listed in table XLink methods, page 122. The
DomLinkBase.java sample uses several of the XLink methods available in xDB.

Table 16 XLink methods

Methods Description

getTitle(), getHRef(), getRole() Retrieve specific attributes.

getLinks(), getLinksByTitle(),
getLinksByRole()

Retrieve all available links, by title, or role.

getNodesLinkingTo() Retrieve all nodes linking to a specific resource.

getArcs(), getFrom(), getTo(),
getStartingResources(),
getEndingResources()

Retrieve all information from arcs.

getLocators(), getRole(), getLabel() Retrieve all information from locators.

expandDocument(), getResources-
LinkedBy()

Retrieve the content of the targeted resources.

Samples

XLink.java

DomLinkBase.java

API documentation

com.xhive.dom.xlink.interfaces

122 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/Publish2HTML.java
./../../src/samples/manual/Publish2PDF.java
./../apidocs/com/xhive/util/interfaces/XhiveTransformerIf.html
./../apidocs/com/xhive/util/interfaces/XhiveFormatterIf.html
./../../src/samples/manual/XLink.java
./../../src/samples/manual/DomLinkBase.java
./../apidocs/com/xhive/dom/xlink/interfaces/package-summary.html

Managing Documents in Applications

Using versioning
xDB offers versioning for documents and BLOBs. The makeVersionable() method of the
XhiveLibraryChildIf interface controls versioning.

The example below uses the makeVersionable() method to enable versioning for the
"briefing.xml" document.
XhiveLibraryChildIf doc = briefingLib.get("briefing.xml");
doc.makeVersionable();

The getXhiveVersion() method in the XhiveLibraryChildIf interface can be used to get the
last version of a document:
// get the last version of doc
XhiveVersionIf lastVersion = doc.getXhiveVersion();

The XhiveVersionIf interface contains several methods for obtaining version information, including
getDate(), getLabel() and getCreator():
System.out.println("id: " + version.getId());
System.out.println("creation date: " + version.getDate().toString());
System.out.println("label: " + version.getLabel());
System.out.println("created by: " + version.getCreator().getName());

Samples

Versioning.java

Branching.java

API documentation

com.xhive.dom.interfaces.XhiveLibraryChildIf

com.xhive.versioning.interfaces.XhiveBranchIf

com.xhive.versioning.interfaces.XhiveCheckoutIf

com.xhive.versioning.interfaces.XhiveVersionIf

com.xhive.versioning.interfaces.XhiveVersionSpaceIf

Working with versioned documents
A versioned document is a read-only document and cannot be modified until it has been checked out
of the database using the checkOut() method.

The following code example checks out a document.
// do a check out of the last version
Document lastVersionDoc = lastVersion.checkOut();

If a user or an application attempts to modify a versioned document that has not been checked out, the
system generates a VERSION_ACCESS_DENIED exception. A versioned document can only be
checked out by one user at a time and the document is locked while it is checked out. If another user
tries to check out the same document the system generates a VERSION_CHECKED_OUT exception.

EMC Documentum xDB Version 10.5 Manual 123

./../../src/samples/manual/Versioning.java
./../../src/samples/manual/Branching.java
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryChildIf.html
./../apidocs/com/xhive/versioning/interfaces/XhiveBranchIf.html
./../apidocs/com/xhive/versioning/interfaces/XhiveCheckoutIf.html
./../apidocs/com/xhive/versioning/interfaces/XhiveVersionIf.html
./../apidocs/com/xhive/versioning/interfaces/XhiveVersionSpaceIf.html

Managing Documents in Applications

Checked out documents can be checked in using the checkIn() method, as described in the following
example.
// do some updates on "checkedOutDoc"
// ...
// check the document in
lastVersion.checkIn(lastVersionDoc);

The checkIn() method creates a version and releases the checkout lock. The checkout lock can also
be released by using the abort() method. The abort() ignores all document changes and reverts
back to the current version. It is not necessary to check in the specific library child that the checkout
operation created. Any document or BLOB that is checked in creates another version.
Note: Versioned documents remain accessible for regular document retrieval. The last stored version
of a versioned document is used for the retrieval, traversal, query, or index. Earlier versions are only
searchable if they were created with a ’queryable’ option.

Retrieving previous document versions
There are several methods to retrieve document versions, as described in the Retrieval interfaces
and methods, page 124 table.
Table 17 Retrieval interfaces and methods

Interface Method Description

XhiveLibraryChildIf getXhiveVersion() Returns the last version of a document.

XhiveVersionIf getPreviousVersion() Returns the previous version of a document.

XhiveVersionIf getNextVersions() Returns all subsequent versions of a document.

XhiveVersionIf getVersionSpace() Returns the version space of a document. Every
versioned document has its own version space which is
automatically created when versioning is enabled.

Example

The following example uses the getVersionSpace() method in XhiveVersionIf to access the version
space of a document.
XhiveVersionSpaceIf versionSpace = doc.getXhiveVersion().getVersionSpace();

To retrieve a version by version space, use either the getVersionById() or the getVersionByLabel()
method, as described in the following example.
// example of accessing a version via the getVersionById() method
XhiveVersionIf version1_1 = versionSpace.getVersionById("1.1");
Document doc1_1 = version1_1.getAsDocument();

Branching methods
xDB offers various methods for creating branches and for retrieving branch and version information,
including:
Table 18 Branch and version methods

Interface Method Description

XhiveVersionIf createBranch() Creates a new branch.

124 EMC Documentum xDB Version 10.5 Manual

Managing Documents in Applications

Interface Method Description

XhiveVersionSpaceIf getBranches() Returns the branches of a document.

XhiveBranchIf getVersions(), getVersionByDate(),
getHeadLibraryChild()

Returns the version and documents of a
branch.

Node-level versioning
Instead of checking out the entire document, users can check out individual document nodes and
all their descendants.

The following example code checks out a document node.
XhiveDocumentIf doc = ...; // Some versioned document
Node introChapter = doc.executeXQuery("/root/chapter[@id=’intro’]").next().asNode();
XhiveVersionIf version = doc.getXhiveVersion();
XhiveBranchIf branch = version.getBranch();
// Create an owner document for the copy of the chapter to be edited
XhiveDocumentIf temporaryDoc = session.createTemporaryDocument();
XhiveCheckoutIf checkout = branch.checkOutNode(introChapter, temporaryDoc);
Node chapterCopy = checkout.getNodeCopy();
// Edit the copy of the chapter contained in chapterCopy
// ...
Map<Node, Node> nodes = Collections.singletonMap(introChapter, chapterCopy);
branch.checkInNodesAndMetadata(nodes, null, 0);

The following example code checks out metadata fields. Checking out a particular key name allows
checking in a value for that key.
XhiveLibraryChildIf lc = ...; // Some versioned document or blob
XhiveVersionIf version = lc.getXhiveVersion();
XhiveBranchIf branch = version.getBranch();
branch.checkOutMetadataField("key");
String oldValue = lc.getMetadata().get("key"); // If required
Map<String, String> metadata = Collections.singletonMap("key", "newValue");
branch.checkInNodesAndMetadata(null, metadata, 0);

Any number of nodes and metadata fields can be checked in at once to create a single new version
of the document in that branch. Because nodes are checked out from a branch, the checkin creates
another head version of the branch, regardless of the latest version.
Note: The XhiveVersionIf.createBranch() method creates another branch.

Using searchable versions
To enable historical searching of a versioned library child, you must mark it as queryable when you
create it.

The example below uses the makeVersionable(boolean queryable) method to create the
"briefing.xml" document with version searching enabled.
XhiveLibraryChildIf doc = briefingLib.get("briefing.xml");
doc.makeVersionable(true);

EMC Documentum xDB Version 10.5 Manual 125

Managing Documents in Applications

To determine whether an existing version is searchable, you can use the isQueryable() method of the
XhiveVersionIf interface. This is accessible through XhiveLibraryChildIf.getXhiveVersion().

Querying

For queryable documents, xDB provides XQuery xhive:collection-*-date extension functions.
For more information, refer to the section about XQuery extension functions.

Indexing

Default indexes only store info about the current version of the document. On documents that were
created with the ‘queryable’ option set to true, you can use XhiveIndexIf.VERSION_INFO to enable
indexing of old versions. On multipath indexes, which don’t use the XhiveIndexIf options, you can
use XhiveExternalIndexConfigurationIf.setStoreVersionInfo(true).

API documentation

com.xhive.dom.interfaces.XhiveLibraryChildIf

Using metadata on library children
Library (libraries, documents and blobs) can have metadata, consisting of key/value pairs. Such
metadata can be used for various purposes, for example for storing information about a document if
that data does not fit the DTD of the document. Metadata can be indexed and queried.

The metadata is a java.util.Map that can only contain stings. Example:
XhiveDocumentIf doc = ...;
doc.getMetadata().put("author", "Jane Doe");

When a new version of a versioned document or blob is checked in, the metadata of the new version is
also checked in, overriding the previous version of the metadata.

Using abstract schemas
Abstract schemas contain interfaces for handling schema information, such as the structure of element
declarations, and interfaces for applying schema information to DOMs validation. xDB provides
full abstract schema support for DTDs and a more limited support for XML schema, with some
product-specific modifications. For a detailed description of the interfaces, see the API documentation.
Note: The W3C has canceled the DOM L3 abstract schema specifications. xDB continues to support
the AS specification for model manipulation.

xDB stores the abstract schema of a document in a catalog during validated parsing. For more
information, see the chapter on catalogs and validation, page 221.

The following example shows how to use the setActiveASModel() method with an abstract schema
that has already been stored in the catalog.

126 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/dom/interfaces/XhiveLibraryChildIf.html

Managing Documents in Applications

Document doc = charterLib.createDocument(null, "chapter", null);
DocumentAS document = (DocumentAS) doc;
document.setActiveASModel(model);

The ASModel, ASElementDecl, ASAttributeDecl, ASNotationDecl, and ASEntityDecl interfaces get
information about the declarations in a DTD. These interfaces do not work with XML Schemas. The
XML Schema API must be used to obtain information from XML schemas.

Examples

The following code example gets all required attributes of an element.
ASModel model = ((DocumentAS) document).getActiveASModel();
ASElementDecl eltDeclaration = model.getElementDecl(element.getNamespaceURI(),
element.getTagName());

ASNamedObjectMap attributeDeclarations = eltDeclaration.getASAttributeDecls();
System.out.println("The following attributes are all required:");
for (int i = 0; i < attributeDeclarations.getLength(); i++) {
ASAttributeDecl attDecl = (ASAttributeDecl) attributeDeclarations.item(i);
// Check whether this attribute is required
if (attDecl.getDefaultType() == ASAttributeDecl.REQUIRED) {
String attName = attDecl.getObjectName();
System.out.println(attName);

}
}

The following example code shows how to parse a DTD or XML Schema directly into the catalog
of a library.
ASDOMBuilder builder = (ASDOMBuilder) charterLib.createLSParser();
model = builder.parseASURI(url, ASDOMBuilder.DTD_SCHEMA_TYPE);
unCharterCatalog.setPublicId(publicId, model);

The following example code serializes a schema model in the catalog.
DOMASWriter writer = (DOMASWriter) charterLib.createLSSerializer();
ByteArrayOutputStream output = new ByteArrayOutputStream();
writer.writeASModel(output, model);
String schemaString = output.toString();

API documentation
org.w3c.dom.as

com.xhive.dom.interfaces.XhiveCatalogIf

Using the APIs for XSL transformations
The XhiveTransformerIf and XhiveFormatterIf interfaces in com.xhive.util.interfaces
are convenient access methods to Xalan and FOP of Apache project respectively. In some cases,
use the more advanced options of these packages. The examples below provide a starting point for
using these interfaces.

XhiveFormatterIf.formatAsPDF
import org.apache.avalon.framework.logger.ConsoleLogger;

EMC Documentum xDB Version 10.5 Manual 127

./../apidocs/org/w3c/dom/as/package-summary.html
./../apidocs/com/xhive/dom/interfaces/XhiveCatalogIf.html

Managing Documents in Applications

import org.apache.avalon.framework.logger.Logger;
import org.apache.fop.apps.Driver;
import org.apache.fop.messaging.MessageHandler;

public static void formatAsPDFToStream(DOMImplementation docCreator,
Document xmlSource, Document xslSource, OutputStream os)

throws XhiveException {
try {
// XSLT part
XhiveTransformerIf transformer = XhiveDriverFactory.getDriver().

getTransformer();
Document foDocument = transformer.transformToDocument(docCreator,

xmlSource, xslSource);

// FOP part
Driver driver = new Driver();
Logger logger = new ConsoleLogger(ConsoleLogger.LEVEL_ERROR);
MessageHandler.setScreenLogger(logger);
driver.setLogger(logger);
driver.setRenderer(Driver.RENDER_PDF);
driver.setOutputStream(os);
driver.render(foDocument);

} catch (Exception e) {
//e.printStackTrace();
throw new XhiveException(XhiveException.FORMAT_EXCEPTION, e);

}
}

XhiveTransformerIf.transform
import com.xhive.core.interfaces.XhiveSessionIf;
import com.xhive.error.XhiveException;
import com.xhive.dom.*;
import org.w3c.dom.*;
import javax.xml.transform.*;
import java.io.*;
import java.util.Iterator;

public Document transformToDocument(DOMImplementation docCreator,
Node xmlSource, Document xslSource)

throws XhiveException {

Document result = docCreator.createDocument("", "Result", null);
Node rootElem = result.getDocumentElement();
result.removeChild(rootElem);

transform(xmlSource, xslSource, new DOMResult(result));
return result;

}

public void transformToStream(Node xmlSource, Document xslSource,
Writer writer)
throws XhiveException {

transform(xmlSource, xslSource, new StreamResult(writer));
}

public String transformToString(Node xmlSource, Document xslSource)
throws XhiveException {

128 EMC Documentum xDB Version 10.5 Manual

Managing Documents in Applications

StringWriter result = new StringWriter();
transformToStream(xmlSource, xslSource, result);
return result.toString();

}

private void transform(Node xmlSource, Document xslSource, Result result) {
try {
// Try to initialize URI resolver
URIResolver myResolver;
try {
XhiveSessionIf session = ...; // Left as an exercise to the reader
if (session != null) {
myResolver = new XhiveURIResolver(session);

} else {
myResolver = null;

}
} catch (Exception e) {
// (No session?) Fine, then we don’t use a URIResolver
myResolver = null;

}

TransformerFactory tFactory = TransformerFactory.newInstance();
if (myResolver != null) {
// Factory resolver must be set before transformer is created
tFactory.setURIResolver(myResolver);

}
Transformer transformer = tFactory.newTransformer(new DOMSource(

xslSource));
if (myResolver != null) {
transformer.setURIResolver(myResolver);

}

transformer.transform(new DOMSource(xmlSource), result);
} catch (Exception e) {
throw new XhiveException(XhiveException.TRANSFORM_EXCEPTION, e);

}
}

/**
* URI resolver that translates
* xhive:path#query
* into an xquery run on path, e.g.
* xhive:/plays#//TITLE
*/
private class XhiveURIResolver implements URIResolver {
private static final String XHIVE_PREFIX = "xhive:";
private static final String SEPARATOR = "#";

private XhiveSessionIf session;

public XhiveURIResolver(XhiveSessionIf session) {
this.session = session;

}

public Source resolve(String href, String base) throws TransformerException {
// Do we need to do anything?

EMC Documentum xDB Version 10.5 Manual 129

Managing Documents in Applications

if (((base == null) || (!base.startsWith(XHIVE_PREFIX))) &&
(!href.startsWith(XHIVE_PREFIX))) {

return null;
} else {
// Process href
// Up to us to come up with a result
if (!href.startsWith(XHIVE_PREFIX)) {
// Create href with base
href = base + href;

}
// Strip xhive: from href
href = href.substring(XHIVE_PREFIX.length());
if (!href.startsWith("/")) {
href = "/" + href;

}

// Separate in path and query
String path = null;
String query = null;
if (href.indexOf(SEPARATOR) != -1) {
path = href.substring(0, href.indexOf(SEPARATOR));
query = href.substring(href.indexOf(SEPARATOR) + 1);

} else {
path = href;

}
// Get query context
XhiveLibraryChildIf contextNode = session.getDatabase().

getRoot().getByPath(path);
if (contextNode == null) {
// Nothing found, error or null?
throw new TransformerException("XhiveXalanTransfomer:

Could not resolve " + href);
//return null;

} else {
if (query == null) {
if (contextNode instanceof XhiveDocumentIf) {
return new DOMSource(contextNode);

} else if (contextNode instanceof XhiveBlobNodeIf) {
return new StreamSource(((XhiveBlobNodeIf) contextNode).

getContents());
} else {
throw new TransformerException("XhiveXalanTransfomer: "

+ href + " is not a document");
}

} else {
return getExecuteQuerySource(contextNode, query, href);

}
}

}
}

private Source getExecuteQuerySource(XhiveLibraryChildIf contextNode,
String query, String href) throws TransformerException {

if (query.startsWith("xpointer(") && query.endsWith(")")) {
query = query.substring("xpointer(".length(), query.length() - 1);

}
Iterator queryResult = null;
try {
queryResult = contextNode.executeXQuery(query);

130 EMC Documentum xDB Version 10.5 Manual

Managing Documents in Applications

} catch (XhiveException e) {
throw new TransformerException("XhiveXalanTransformer:

Problem with query " + href + ": " + e.getMessage(), e);
}
// We will only use the first result here (otherwise we would

have to include a new top-element)
if (queryResult.hasNext()) {
XhiveXQueryValueIf queryValue = (XhiveXQueryValueIf)

queryResult.next();
// Is it a node?
try {
return new DOMSource(queryValue.asNode());

} catch (XhiveException e) {
// must be XQUERY_ERROR_VALUE, so interpret it as a string
return new StreamSource(new StringReader(queryValue.asString()));

}
} else {
throw new TransformerException("XhiveXalanTransformer:

Query " + href + ": " + " has no results");
}

}
}

For improved Xalan XSLT performance, it is best to create Templates objects using the
newTemplates call on TransformerFactory. The example below shows how to use the interface.
For more information, see the Xalan documentation.
TransformerFactory tFactory = TransformerFactory.newInstance();tFactory.
translet = tFactory.newTemplates(new DOMSource(xslSource));
// Now keep this translet cached somewhere, and for transforming do:
Transformer transformer = translet.newTransformer();
transformer.transform(new DOMSource(xmlSource), new StreamResult(writer)));
One advantage of a compiled stylesheet is that it no longer has references to any xDB persistent data,
so you can use the compiled version with any session.

EMC Documentum xDB Version 10.5 Manual 131

Chapter 8

Session and Transaction Management

This chapter contains the following topics:

• Sessions, transactions and locking
• Namebase and locking
• Session lifecycle
• Referencing database objects in sessions
• Multithreaded session handling
• Transaction isolation in sessions
• Managing locking conflicts
• Read-only transactions
• Getting info on sessions and locks

Sessions, transactions and locking
xDB accesses the database using transactions within sessions, which are connected to the database.
A session can have multiple transactions that can perform data retrievals, changes or rollbacks
on the database.

Whenever data is modified during a transaction, xDB locks that data to ensure that it cannot be modified
by other transactions. The locks are released when the locking transaction is committed or rolled back.

These locks are placed on the related objects as soon as they are modified, and they are released after a
commit or rollback call. As long as an object remains locked, other transactions cannot change it. By
default, a transaction that tries to use a locked object is blocked until the lock is released.

In addition to such implicit data locking during modification, developers can lock libraries explicitly.
To obtain debug information about open transactions and their associated locks from the command
line, you can use the xdb info command, page 251.

An xDB database is divided into locking contexts. A locking context represents a group of objects
that are locked together, which means that locking one of the objects in the group locks all the other
objects in the group at the same time. As soon as anything within a locking context is changed,
the entire locking context is locked. For example, a library is a locking context. When a user adds
a document to a library, other concurrent sessions cannot add any other documents to that library
until the commit is performed.

The Locking behavior, page 134 table describes several locking scenarios.

EMC Documentum xDB Version 10.5 Manual 133

Session and Transaction Management

Table 19 Locking behavior

Action Locked

Add/remove a document (or library) The library to which the document is added.

Modify a document The document.

Add/remove an index to/from a library The library to which the index is added.

Add/remove a user/group The database object (which means that one concurrent
thread can make these changes).

Update a user/ group The database object.

Update a context conditioned index The context conditioned index.

Namebase and locking

Documents stored in xDB use an internal data structure called namebase. This structure is relevant
to the locking behavior but cannot be accessed directly using the API. The namebase maps element
and attribute names to small integers which are processed faster. The namebase is locked when it is
modified.

When a library is created, the following option influences the namebase locking behavior:

• XhiveLibraryIf.LOCK_WITH_PARENT
By default, each library is created with its own namebase. Using more namebases improves
concurrency, but adds some space and processing overhead. In some cases, for example if there
are many libraries with little content, it may be better for a new library to share the namebase
of the parent library.

API documentation

com.xhive.dom.interfaces.XhiveLibraryIf

Session lifecycle
In xDB, the data is accessed using transactions within sessions. A transaction starts with a call to
session.begin() and ends with a call to session.commit() or session.rollback(). When a
session is in a transaction the data in the database can be viewed or changed.

You can use a call to session.isOpen() to check if a session is in a transaction (an open or active
session is a session in a transaction).

At a minimum, a full session lifecycle consists of the following operations:

• createSession(), page 141

134 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html

Session and Transaction Management

• connect(), page 142

• begin(), page 142

• perform database actions, optionally using checkpoint(), page 142

• commit(), page 142 or rollback(), page 142

• disconnect(), page 143

• terminate(), page 143

Follow this model closely when creating xDB applications.

When a transaction does not need to make changes to the data then make the session read-only. Do
this with session.setReadOnlyMode(). Read-only transactions do not need locks. A session can
enable or disable the read-only mode when not in a transaction.

After ending a transaction you can start a new transaction. You end a transaction with
session.commit() or session.rollback().

After a call to session.disconnect() you can do a new call to session.connect() and then
start a new transaction.

After a call to session.terminate() you can not use the session anymore.

The code below is a complete example how to use sessions following this model:
package com.emc.xhivesupport.demo;

import com.xhive.XhiveDriverFactory;
import com.xhive.core.interfaces.XhiveDriverIf;
import com.xhive.core.interfaces.XhiveSessionIf;
import com.xhive.dom.interfaces.XhiveLibraryIf;

public class SimpleMain {
public static void main(String[] dummy) {
XhiveDriverIf driver = XhiveDriverFactory.getDriver();
driver.init(1024);
XhiveSessionIf session = driver.createSession();
session.setReadOnlyMode(true); // if no write access needed
try {
session.connect("Administrator", "northsea", "united_nations");
session.begin();
// your code goes here
session.commit();

} finally {
session.rollback();
session.terminate();

}
driver.close();

}
}

Whenever exceptions occur in a transaction, the session must always rollback, whereas whenever
a transaction succeeds, the session must always commit. This is also true when the session is in

EMC Documentum xDB Version 10.5 Manual 135

Session and Transaction Management

read-only mode. Even though there are no changes, and no locks to release, a read-only transaction
still does eat resources. A commit or rollback is needed to free these resources.

The finally block is always executed. If there are exceptions in the try block, the
session.commit() in the try is not executed and the session.rollback() in the finally
block will rollback the session. If there are no exceptions, the execution of the session.rollback()
immediately follows the session.commit(). In this case the rollback simply does nothing.

A session.terminate() is allowed when a session is not in a transaction. No need to replace the
above finally block by this:

} finally {
if (session.isOpen()) {
session.rollback();

}
if (session.isConnected()) {
session.disconnect();

}
session.terminate();

}

Following this model, you can always create your sessions in method scope, and usually you can do
all the session management in the same method. It is not recommended to ’remember’ sessions as
instance members or class members. It will almost certainly lead to errors related to not respecting
the sessions lifecycle.

Samples

UseSessions.java

API documentation

com.xhive.core.interfaces.XhiveSessionIf

Joined sessions and session pools

Joined sessions

You can have concurrent transactions: different threads can each create their own session and execute
transactions concurrently. Here, locks make sure data cannot be changed in conflicting ways. But to
make sure that data cannot be changed in conflicting ways, you can not do different things concurrently
in one transaction.

The requirement that a session is used by one thread at a time is ensured by the xDB session API
as follows:

136 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/UseSessions.java
./../apidocs/com/xhive/core/interfaces/XhiveSessionIf.html

Session and Transaction Management

• With session.join() you can register the current thread to the session (the session joins the
current thread).

• With session.leave() you can unregister the current thread from the session (the session
leaves the current thread).

• With session.isJoined() you can check whether the current thread is registered to the session
(the session is joined to the current thread).

Almost all operations on the session require session.isJoined() == true. In particular
session.leave() requires session.isJoined() == true. To make sure that one thread can
not highjack a session that is joined to some other thread session.join() requires the session is
not joined to any thread. As a consequence, if a session is joined to some other thread, and that other
thread is somehow gone, there is nothing you can do about it.

Notice, driver.createSession() implicitly joins the returned session to the current thread. That
explains why you usually do not need to bother about this.

Working with a Sessionpool

In early versions of xDB the create and terminate of a (remote) session was expensive, because of
the create and close of connections under the hood. It was recommended to avoid these operations
as much as possible by using a session pool. Starting with xDB 8, xDB has a connection manager,
keeping its own pool of connections. Unless performance tests or special conditions suggest otherwise,
in production code, session pools usually are not needed.

If you still need a session pool, a session returned to the pool by one thread will in general be reused
by some other thread. The session should leave the current thread when it is returned to the pool.
The leave and join of sessions is hard enough to make sure it is coded only once, as part of the
implementation of the pool and not on each use in the code using the pool.

The example below shows how you could implement a session pool:

package com.emc.xhivesupport.demo;

import com.xhive.core.interfaces.XhiveDriverIf;
import com.xhive.core.interfaces.XhiveSessionIf;

import java.util.concurrent.ConcurrentLinkedQueue;

public class SessionPool {
private XhiveDriverIf driver;
private ConcurrentLinkedQueue<XhiveSessionIf> freeSessions =

new ConcurrentLinkedQueue<XhiveSessionIf>(); // pool implementation

// singleton
private static SessionPool instance = new SessionPool();
private SessionPool() {
}

EMC Documentum xDB Version 10.5 Manual 137

Session and Transaction Management

public static SessionPool getInstance() {
return instance;

}

// core functionality
public synchronized void init(XhiveDriverIf driver) { // thread safe
this.driver = driver;

}
public XhiveSessionIf getSession() {
XhiveSessionIf session = freeSessions.poll(); // thread safe
if (session == null) {
session = driver.createSession();

} else {
session.join();

}
return session;

}
public void returnSession(XhiveSessionIf session) {
session.rollback();
session.disconnect();
session.leave();
freeSessions.add(session); // thread safe

}
public synchronized void close() { // thread safe
XhiveSessionIf session = freeSessions.poll();
while (session != null) {
session.terminate();
session = freeSessions.poll();

}
instance = null; // encourage garbage collection

}
}

The example below shows how to use the session pool:

package com.emc.xhivesupport.demo;

import com.xhive.XhiveDriverFactory;
import com.xhive.core.interfaces.XhiveDriverIf;
import com.xhive.core.interfaces.XhiveSessionIf;

public class TestSessionPool implements Runnable {
public static void main(String[] dummy) throws InterruptedException {
XhiveDriverIf driver = XhiveDriverFactory.getDriver();
driver.init(1024);
SessionPool pool = SessionPool.getInstance();
pool.init(driver);
Thread[] threads = new Thread[100];
for (int i = 0; i < threads.length; i++){
threads[i] = new Thread(new TestSessionPool());
threads[i].start();

}

138 EMC Documentum xDB Version 10.5 Manual

Session and Transaction Management

for (int i = 0; i < threads.length; i++) {
myJoin(threads[i]);

}
pool.close();
driver.close();

}
private static void myJoin(Thread t) {
try {
t.join();

} catch (InterruptedException x) {
Thread.currentThread().interrupt();

}
}
public void run() {
SessionPool pool = SessionPool.getInstance();
for (int i = 0; i < 20; i++) {
XhiveSessionIf session = pool.getSession();
session.setReadOnlyMode(true); // if no write access needed
try {
session.connect("Administrator", "northsea", "united_nations");
session.begin();
// your code goes here
session.commit();

} finally {
pool.returnSession(session);

}
}

}
}

Notice, the use and implementation of this session pool is as follows:

• After a driver is initialised, it is passed to the pool.

• Whenever a session is needed, the user must get one from the pool.

• When you get a session from the pool, in SessionPool.getSession(), the pool must do the
session.join().

• The user must do the session.connect(), the session.begin() and, if a transaction was
succesfull, the session.commit().

• When you return a session to the pool, in SessionPool.returnSession(), the pool must do
the session.rollback() if the transaction failed. Also in this method, the pool must do the
session.disconnect() and the session.leave(). Notice, from the viewpoint of the pool,
after return from this method the current thread is gone.

• All sessions must eventually be returned to the pool.

• The administration of free sessions must be thread-safe.

• After all sesssions are returned to the pool, the user must close the pool, and the pool must terminate
all sessions.

EMC Documentum xDB Version 10.5 Manual 139

Session and Transaction Management

Other requirements for a pool are conceivable. For instance, pools that keep connected sessions, or
keep sessions that come from different drivers.

API documentation

com.xhive.core.interfaces.XhiveSessionIf

Sessions and references to database objects

Database object references

Objects in the database can only be accessed in an open transaction. Furthermore, objects retrieved
from a database in one transaction cannot be used in a subsequent transaction. For example, the
following code snippet will throw an XhiveException with errorcode OBJECT_CLOSED:

session.begin();
XhiveLibraryIf library = session.getDatabase().getRoot();
System.out.println(library.getNumChildren());
session.commit();

session.begin();
System.out.println(library.getNumChildren()); // ERROR: OBJECT_CLOSED
session.commit();

The reference library points to a database object. The line:

System.out.println(library.getNumChildren());

appears two times in the code. The first occurrence is in the same transaction where we get the
library reference. The second occurrence is in another transaction.

Solution: just get the database object again:

session.begin();
XhiveLibraryIf library = session.getDatabase().getRoot();
System.out.println(library.getNumChildren());
session.commit();

session.begin();
library = session.getDatabase().getRoot(); // get again
System.out.println(library.getNumChildren()); // OK
session.commit();

140 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/core/interfaces/XhiveSessionIf.html

Session and Transaction Management

Use of checkpoint

The session.checkpoint() method allows you to write code like this:

session.begin();
XhiveLibraryIf library = session.getDatabase().getRoot();
System.out.println(library.getNumChildren());
session.checkpoint(false); // or: session.checkpoint(true)
System.out.println(library.getNumChildren()); // ref library still valid
session.commit();

The effects of void XhiveSessionIf.checkpoint(boolean downgradeLocks) are:

• Commit all persistent operations executed since the last begin() or checkpoint(), and keep all
locks acquired during the current transaction. The current transaction remains active.

• If downgradeLocks == true, downgrade write locks to read locks.
There may be use cases where you need checkpoints. For instance, you want to commit expensive
operations one by one, but not lose all the work if an exception occurs, while subsequent operations on
the other hand need a consistent view of all the committed work in progress.

The downside of using checkpoints is that locks are not released. Using checkpoint() makes your
transactions longer and may hinder concurrency, and, as a consequence, can decrease throughput and
overall performance. Usually it is better to have shorter transactions that release all their locks, using
commit() or rollback().

Hence, replacement of:

session.commit();
session.begin();

by:

session.checkpoint();

should only be done to support a specific use case.

API documentation

com.xhive.core.interfaces.XhiveSessionIf

XhiveDriverIf.createSession()
The createSession() method creates a new database session. The session is implicitly joined to the
current thread.

Example

The following example creates a session.
XhiveDriverIf driver = ...; // e.g. from XhiveDriverFactory.getDriver()

EMC Documentum xDB Version 10.5 Manual 141

./../apidocs/com/xhive/core/interfaces/XhiveSessionIf.html

Session and Transaction Management

XhiveSessionIf session = driver.createSession();

API documentation

com.xhive.core.interfaces.XhiveDriverIf

connect()
The connect() method connects a session to a database. The connect method has a relatively small
overhead. This call’s overhead is relatively small, so in a multi-user setting you may choose to connect
every time you start using a session for an individual users.

begin()
The begin() method starts a transaction. All database changes are part of the transaction and only
become visible in the database after a commit() call or a checkpoint() call. All data read from the
database is in the same state as at the time of the begin() call.

checkpoint()
The checkpoint() method commits database changes within a transaction to the database, including all
changes that were made since the begin() call or the last checkpoint() call. The changes are visible to
other sessions. The transaction remains open after a checkpoint() call.

A checkpoint() call keeps the locks on the database, unless the true option is passed to downgrade the
locks. A checkpoint() call is faster that a commit() call followed by a begin() call.

Like a commit() call, a checkpoint() call deletes all temporary objects, such as XQuery constructed
result nodes or elements created but not appended to their document. Therefore, even though
references to existing database objects remain valid, these temporary objects can no longer be used
after a checkpoint() call.

For optimal concurrency, it best to keep the number of readlocks as low as possible. For this reason, it
may be better to use a commit() call followed by a begin() call instead of a checkpoint() call.

commit()
The commit() method commits all data changes to the database, cleans up data temporarily stored in
the database, and releases all locks.

The time to process a commit() method depends on the changes that were made in the transaction.

rollback()
The rollback() method revokes all changes in the database that were made since calling the begin()
method or the checkpoint() method. If changes were already written to the disk, the rollback() method
can have considerable overhead.

142 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/core/interfaces/XhiveDriverIf.html

Session and Transaction Management

disconnect()

The disconnect() method returns a session back to the initial state it was in when the session was
created. The disconnect() method has no overhead.
Note: Although a disconnect() call marks the end of a session scope, it does not free all the resources
allocated by the session. To improve performance, use the terminate() method to terminate a session
when it is no longer needed. If the session is a remote session, the TCP connection to the page server is
returned to the connection manager. If the terminate() method is not called, the connection is closed
when the session is finalized, after it has been garbage collected.

terminate()

The terminate() method closes the connection to the page server. Terminating a local session has
no effect.

After calling the terminate() method, the session object can no longer be used.

If a session is not terminated, it continues to use resources until it is garbage collected. Open sessions
in transaction can have internal references pointing to them that are otherwise never garbage collected.
Sessions that are not in transaction are garbage collected when all references are released.

join()

The join() method joins a session to the current thread. Only the current thread can use database
objects, for example documents that belong to this session.

When a session is created, it is automatically joined to the thread that creates it.

You should always call the join() method before you start using a session in a given thread. When
working with servlets or EJBs, each request is executed in an ’unknown’ thread, but during execution
of the request the thread does not change, so join() is only called once. The time it takes to execute the
join() method is almost negligable. Still, you should only call it as needed, as when it can help you to
detect unexpected or unwanted thread changes.
Note: It is not possible to use a single session concurrently in multiple threads. Do not try to serialize
the use of a session in multiple threads by synchronizing on the session object. This conflicts with
internal use of the session synchronization and may lead to deadlocks. If it is necessary to serialize the
use of a session, the synchronization should be done on an application object.

leave()

The leave() method unbinds a session from a thread.

It is important to call the leave() method on sessions that are no longer used in threads. Otherwise, it
may become possible to terminate the session after the thread is exited and the terminate() method is
called from another thread.

EMC Documentum xDB Version 10.5 Manual 143

Session and Transaction Management

Referencing database objects in sessions
Objects in the database can only be accessed in an open transaction. Furthermore, objects retrieved
from a database in one transaction cannot be used in the following transactions after a commit() call.
For example, the following call is not allowed:
session.begin();
XhiveLibraryIf library = session.getDatabase().getRoot();
session.commit();
session.begin();
System.out.println(library.getName());
session.commit();

Instead, use the following call:
session.begin();
XhiveLibraryIf library = session.getDatabase().getRoot();
session.commit();
session.begin();
library = session.getDatabase().getRoot();
System.out.println(library.getName());
session.commit();

After calling the commit() and begin() methods, the library could have been removed in
another session. An attempt to use an object in a different transaction usually generates an
XhiveException.OBJECT_DEAD error. The error indicates that the object can no longer be used in
the Java application.

Instead of calling the commit() and begin() method, call the checkpoint() method. The
checkpoint() method applies permanent changes, does not refresh the database view, and keeps all
locks. All references to database objects that were retrieved can still be used.

Multithreaded session handling
xDB accesses the database using transactions within sessions. Each session is created using
XhiveDriverIf.createSession().

Sessions can perform a variety of operations, such as:

• Read-only XQueries

• Read-Write XQueries

• Reading libraries using DOM API

• Storing documents using DOM API

• Alter existing documents

A session can be used by multiple threads, but by only one thread at a time. To free a session for use
by the next thread, the current thread must call leave(), page 143. To use the session, the next thread
must then call join(), page 143.

144 EMC Documentum xDB Version 10.5 Manual

Session and Transaction Management

Operation execution

A good way to perform different operations consistently over multiple threads is to first create a base
class for performing an operation, which would include the session management code, the exception
handling code and so forth. Then create various derived classes whose only purpose is to run the
desired operation.

In general, if you know in advance that the operation is read-only, it is best to set the session state
to read-only. This may improve concurrency, because no locks are taken by read-only transactions,
page 148.

Exception handling

Where operations happen concurrently, proper session exception handling is of the outmust
importance, to help avoid data corrupotion, deadlocks and unexpected behaviour.

First and foremost: if an exception occurs, make sure you roll back the transaction:

try {
session.begin()
//Some sort of operation
session.commit()

}

catch (Exception e) {
e.printStackTrace();
session.rollback();

}

When operations are being performed concurrently, locking issues may arise (for example: transaction
A has a read lock on the database, while transaction B tries to retrieve a write lock on the database). In
such cases a XhiveLockNotGrantedException will be raised. Since the issue can be temporary (for
example, if you retry the offending operation later, the lock may have been released), a good way to
handle such an exception may be to rollback the session and try again.
boolean completed = false;
int unsuccesfullAttempts = 0;

while (!completed && unsuccesfullAttempts < MAX_ATTEMPTS) {
try {
session.begin();
executeOperation(session);
session.commit();
completed = true;

} catch (XhiveLockNotGrantedException e) {
unsuccesfullAttempts++;
session.rollback();

}
}

EMC Documentum xDB Version 10.5 Manual 145

Session and Transaction Management

Samples

MultithreadedOperations.java

Transaction isolation in sessions
xDB supports transaction isolation and atomicity. When the begin()method is called, the database view
for that session is updated so that changes made in other transactions within other sessions are visible.

The example below shows three parallel sessions: read-write session A and two read-only sessions B
and C. Each column lists the actions in a session in chronological order. The table shows at what point
a change made in read-write session A becomes visible to sessions B and C.

Table 20 Session calling begin() updates its database view

Session A (read-write) Session B (read-only) Session C (read-only)

begin()

begin()

addDocument ’doc’

// ’doc’ not visible begin()

// ’doc’ not visible

commit()

commit() // ’doc’ not visible

commit()

begin()

// ’doc’ is visible

commit()

begin()

// ’doc’ is visible

commit()

The document ’doc’ added in the transaction within session A remains invisible in any other
transaction until the transaction within session A is committed. Even then, the open transactions of
sessions B and C do not see the added document until their next begin().

Managing locking conflicts
A transaction cannot continue if it tries to get a write lock on a database object while another
transaction has a read lock (or a write lock) on the same object. A similar conflict occurs when one
transaction tries to get a read lock on a database object while another transaction has a write lock.
What happens depends on the XhiveSessionIf.setWaitOption() wait option setting and the status of
the collection of all current locks. The default setting isWAIT.

By default, the transaction attempting to modify the object is blocked until the other transaction
releases the lock. If the wait option is set to NO_WAIT, an XhiveLockNotGrantedException error is
thrown as soon as a transaction encounters a locked object. It is also possible to specify a time interval

146 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/MultithreadedOperations.java

Session and Transaction Management

in milliseconds for a transaction to wait for a lock grant. If the wait time has passed and the other
transaction still locks the database object, an XhiveLockNotGrantedException error is thrown.

Lock exceptions can occur regardless of the wait option setting. For example:
Transaction A reads document X
Transaction A writes document X
Transaction B reads document Y
Transaction A wants to write document Y

-> blocks because transaction B already has a readlock
Transaction B wants to read X

-> blocks because transaction A already has a writelock

At this point, both transactions are unable to continue, because each one is waiting for the other to
finish. In this case, xDB picks one transaction and throws an XhiveDeadlockException error, which is
a subclass of the XhiveLockNotGrantedException error. If a rollback is performed on that transaction,
the locks are released so that the other transaction can continue.

It is possible to get a deadlock even when only one database object is involved. For example:
Transaction A reads document X
Transaction B reads document X
Transaction A wants to write document X

-> blocks because transaction B already has a readlock
Transaction B wants to write document X

-> blocks because transaction A already has a readlock

Any application code should always take into account that locking exceptions can occur. Usually the
course of action is to rollback the transaction and retry the same transaction a number of times:

public static void main(String[] dummy) {
XhiveDriverIf driver = XhiveDriverFactory.getDriver();
driver.init(1024);
XhiveSessionIf session = driver.createSession();
session.setReadOnlyMode(false); // read-only transactions need no locks
try {
session.connect("Administrator", "northsea", "united_nations");
session.begin();
int numAttempts = 0;
boolean committed = false;
while (numAttempts < 5 && !committed) {
try {
// your transaction code goes here
session.commit();
// not again after commit
committed = true;

} catch (XhiveLockNotGrantedException x) {
// try again
session.rollback();
session.begin();
numAttempts++;

}
}

} finally {
session.rollback();
session.terminate();

}
driver.close();

EMC Documentum xDB Version 10.5 Manual 147

Session and Transaction Management

}

Note: Read-only transactions do not need locks, so they do not need such retry logic. Use read-only
transactions whenever you can.

Read-only transactions
By default, transactions can modify database objects. Transactions are made read-only by calling the
setReadOnlyMode() method. Read-only transactions cannot modify database objects. The advantage
of read-only transactions is that they do not take any locks. This method improves concurrency with
transactions that modify data.

To get a consistent view of the database without using locks, read-only transactions view a logical
snapshot of the data at the time the transaction begins. Read-only transactions do not recognize
any modifications to the data.

Data pages that have been deleted are not reallocated to new documents as long as there are still open
transactions that could use the old data. Therefore, transactions should not be kept open indefinitely.

The checkpoint() method does not affect read-only transactions.

Getting info on sessions and locks
You can use the XhiveDriverIf.printSessionInformation() API to obtain debug information about open
transactions and their associated locks. From the command line, you can use the xdb info command,
page 251. This command is a wrapper for the API.

If an application creates different sessions for different purposes, it can be useful to create the sessions
with names to identify them by, using the XhiveDriverIf.createSession(String name) method.

API documentation

com.xhive.core.interfaces.XhiveDriverIf

148 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/core/interfaces/XhiveDriverIf.html

Chapter 9

Managing Indexes

This chapter contains the following topics:

• Indexes
• Index APIs and samples
• Path indexes
• Multipath indexes
• Multipath index merge
• Multipath indexing methods
• Value indexes
• Value indexing methods
• Full-text indexes
• Full-text indexing methods
• Metadata value indexes
• Metadata full text indexes
• Library indexes
• Library indexing methods
• ID attribute indexes
• ID attribute indexing methods
• Element name indexes
• Element name indexing methods
• Concurrent indexes
• Concurrent indexing methods
• Non-blocking incremental indexes
• Context conditioned indexes
• Context conditioned indexing methods
• Optimizing index performance
• Indexes and timezones

EMC Documentum xDB Version 10.5 Manual 149

Managing Indexes

Indexes
Various types of indexes can be used to speed up queries. Especially with large data sets, indexes
are essential to query performance.

Indexes that are ’live’ are updated automatically when the indexed data is updated. Since updating the
data means updating the indexes, the number of indexes directly impacts update performance. The
only non-live indexes are the context conditioned indexes, page 168, which are deprecated, and
supported only for the sake of compatibilty with previous xDB versions.

The following live index types are currently supported:

• path indexes, page 151
• full text indexes, page 163
• multipath indexes, page 153
• value indexes, page 161
• metadata indexes, page 164
• library ID indexes and library name indexes, page 165
• ID attribute indexes, page 166
• element name indexes, page 167

Only libraries can have a library name index and/or a library ID index. The other index types can be
defined for a library or for a document. Indexes are maintained automatically for all descendants and
children of the library or document. The index is not locked with the library or document, to improve
concurrent access to the index.

Most of the index types can be defined as either concurrent or compressed.

An index stores key-value pairs. The index key is a string, or in case of value indexes, a number type
and a node set value. The index keys are always sorted. Indexes are scalable and the number of
index keys and values can grow without limitations. The node sets can become large, especially with
ID attribute, element name, and value indexes.

For information about index use with XQuery, refer to Using indexes in XQuery, page 188.

Index APIs and samples
All index types use the XhiveIndexIf interface. For information about index use with versioned library
children, refer to Using searchable versions, page 125.

Samples
FTI.java

CreateMultiPathIndex.java

LibraryIndexes.java

IdAttributeIndex.java

ValueIndex.java

ElementNameIndex.java

150 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/FTI.java
./../../src/samples/manual/CreateMultiPathIndex.java
./../../src/samples/manual/LibraryIndexes.java
./../../src/samples/manual/IdAttributeIndex.java
./../../src/samples/manual/ValueIndex.java
./../../src/samples/manual/ElementNameIndex.java

Managing Indexes

IndexAdder.java

IndexInConstruction.java

API documentation
com.xhive.index.interfaces.XhiveIndexIf

com.xhive.index.interfaces.XhiveIndexListIf

com.xhive.index.interfaces.XhiveIndexAdderIf

com.xhive.index.interfaces.XhiveSubPathIf

com.xhive.index.interfaces.XhiveExternalIndexConfigurationIf

com.xhive.index.interfaces.XhiveAnalyzer

com.xhive.index.interfaces.XhiveXqftOptionsAnalyzer

com.xhive.index.interfaces.XhiveIndexWithPathsAnalyzer

com.xhive.index.interfaces.XhiveIndexInConstructionIf

com.xhive.index.interfaces.XhiveIndexInConstructionListIf

com.xhive.index.interfaces

Path indexes
Path indexes index the value of elements and attributes. Path indexes provide a more general way
of specifying the indexed element and allow multiple element and attribute values to be used as
index keys. For example, a full-text field index key can be used as one of the multiple values to
accelerate xhive:fts queries.

Path indexes are specified using an XPath-like syntax. The syntax consists of a path to the indexed
element and an optional specification of the values that are used as index keys. The element associated
with the index key value can only contain a single text or CDATA child node.

Index option examples

//elem indexes all elements named elem. This is similar to an element value index. Such an index
can speed up queries such as //elem[. = "value"], /foo/bar/elem[. = "value"], or
/foo[bar/elem = "value"].

//elem[@attr] indexes all elem elements that contain attr attribute values. This index option is
similar to an attribute value index and speeds up queries such as //elem[@attr = "value"].

//{http://www.example.com}
elem[@{http://www.example.com}attr] indexes all elem elements that contain attr attribute
values that are in the http://www.example.com namespace.

//*[@attr] indexes all attr attribute values independent of the element name. This index option
is similar to an attribute value index and speeds up queries such as //*[@attr = "value"] and
//elem[@attr = "value"].

//chapter/title indexes all title elements that are nested in chapter elements. This index option
can be used for queries such as //chapter/title[. = "Intro"].

EMC Documentum xDB Version 10.5 Manual 151

./../../src/samples/manual/IndexAdder.java
./../../src/samples/manual/IndexInConstruction.java
./../apidocs/com/xhive/index/interfaces/XhiveIndexIf.html
./../apidocs/com/xhive/index/interfaces/XhiveIndexListIf.html
./../apidocs/com/xhive/index/interfaces/XhiveIndexAdderIf.html
./../apidocs/com/xhive/index/interfaces/XhiveSubPathIf.html
./../apidocs/com/xhive/index/interfaces/XhiveExternalIndexConfigurationIf.html
./../apidocs/com/xhive/index/interfaces/XhiveAnalyzer.html
./../apidocs/com/xhive/index/interfaces/XhiveXqftOptionsAnalyzer.html
./../apidocs/com/xhive/index/interfaces/XhiveIndexWithPathsAnalyzer.html
./../apidocs/com/xhive/index/interfaces/XhiveIndexInConstructionIf.html
./../apidocs/com/xhive/index/interfaces/XhiveIndexInConstructionListIf.html
./../apidocs/com/xhive/index/interfaces/package-summary.html

Managing Indexes

//chapter[title] indexes all chapter elements that contain the specified title element value. This
index option can be used for queries such as //chapter[title="Intro"].

/root[node/@id] indexes the id attribute values of node elements nested in a root element. Using
this type of path can speed up index updates because only the nested elements are searched and not
the entire document.

//elem[@attr1 + @attr2] indexes all elem elements that contain attr1 and attr2 attribute values.
This index option can be used for queries that require only a single lookup, such as //elem[@attr1
= "value1" and @attr2 = "value2"], or a query such as //elem[@attr1 = "value1"
and @attr2].

//elem<INT> indexes the elem element values as integers, similar to a value index using the
TYPE_INT option. This index option can be used for queries such as //elem[. = 10]. Specifying
the type as an option is not possible in path indexes, because in a index with multiple values each value
used as the index key can have a different type.

//items/item[@id<INT> + price<FLOAT> + description/name<STRING>] indexes values
that have different types. This kind of index option can be use for queries such as //items/item[@id
= 10 and price = xs:float(4.53) and description/name = "keyboard"].

//article[body<FULL_TEXT>] indexes articles by the full-text content in the article body. This
index option can be used for queries such as //article[body contains text "apples"].

//article[body<FULL_TEXT:my.package
.CustomAnalyzer:>] indexes articles by the full-text content in the article bodies using a custom
text analyzer.

//article[author<STRING> + body<FULL_TEXT::GET_ALL_TEXT,
SA_ADJUST_TO_LOWERCASE, SA_FILTER_ENGLISH_STOP_WORDS>] indexes
articles on both author and content. This index option can be used for queries such as
//article[author="John" and body contains text "apples"].

//elem[%{key1} + %{key2}] indexes all elem elements where the ownerdocument contains
metadata fields with name key1 and key2. This index option can be used for queries that require
only a single lookup, such as //elem[xhive:metadata(., "key1") = "value1" and
xhive:metadata(., "key2") = "value2"].

Path index specification
Path indexes use the following syntax:

spec := elementpath (type | ’[’ values ’]’)?

elementpath := elementstep+

elementstep := (’/’ | ’//’) name

values := value (’+’ value)*

value := (’.’ | ’@’ name | ’%{’ metadatakey ’}’| valuepath) type?

valuepath := ’.//’? name ((’/’ | ’//’) name)* (’/@’ name)?

type := ’<’ (’STRING’ | ’INT’ | ’LONG’ | ’FLOAT’ | ’DOUBLE’ |
’DATE_TIME’ | ’DATE’ | ’TIME’ | ’YEAR_MONTH_DURATION’ |
’DAY_TIME_DURATION’ | fulltextspec) ’>’

152 EMC Documentum xDB Version 10.5 Manual

Managing Indexes

fulltextspec := ’FULL_TEXT’ (’:’ analyzername? (’:’ fulltextoptions?)?)?

fulltextoptions := (fulltextoption | fulltextoption ’,’ fulltextoptions)

fulltextoption := (’GET_ALL_TEXT’ | ’SUPPORT_PHRASES’ | ’SA_AD-
JUST_TO_LOWERCASE’ | ’SA_FILTER_ENGLISH_STOP_WORDS’ |
’INCLUDE_ATTRIBUTES’)

name := ’*’ | uri? localname

uri := ’{’ ([^&}] | reference)* ’}’

In these specifications metadatakey is the metadata field name, localname is an XML name,
reference is an XML character or predefined entity reference, and analyzername is a Java class
name.

Some of the full-text options are only valid in combination with the XhiveStandardAnalyzer. For more
information about the analyzer, see Full-text indexes, page 163.

Multipath indexes
A multipath index allows you to index multiple elements without requiring explicit configuration of
every single index path. It can index the contents of elements as specific value types or as full-text.

To specify which XML elements should be indexed, the user must specify the index’ main path, and
multiple sub-paths. All sub-paths are resolved relative to the main path, and are specified through an
XPath-like path expression and a set of options. All elements matched by the path expression will
be indexed using the given options.

The two most important configuration options for a sub-path are VALUE_COMPARISON and
FULL_TEXT_SEARCH. They can be used together, allowing you to search the contents of an
element either through value or through full-text search. The default type used for value comparison of
a sub-path is String.

Lucene

The multipath indexes are implemented using Apache Lucene (http://lucene.apache.org), a
high-performance, open-source search library. xDB stores multipath indexes separately in the
database, as lucene blobs.

Internally, a multipath index consists of Lucene segments, small chunks that contain one or more
indexed documents. New segments are added as new documents are being indexed.

Lucene segments are logically organized into so-called sub-indexes that represent updates to the index
made by individual transactions. A search query into a multipath index corresponds to a query over the
union of all applicable sub-indexes. For the sake of indexing and query performance, sub-indexes can
periodically merge. For more information, refer to Multipath index merge, page 156.

Multipath index examples

EMC Documentum xDB Version 10.5 Manual 153

http://lucene.apache.org/

Managing Indexes

Assuming that the main path of the multipath index is /main/path, the table below shows various
possibilities for specifying sub-path expressions.

Table 22 Sub-path path expression matching examples

Sub-path specification Description

/ A single slash will match the root path of the index. In the example,
this corresponds to /main/path. Assuming the sub-path option
FULL_TEXT_SEARCH was used, the index will be used for queries such as
/main/path[. contains text "some text"]

* (or /*) A wildcard matching any direct child element of the main path of the
index. Assuming subpath option FULL_TEXT_SEARCH, such a sub-path
configuration will speed up queries such as /main/path[elem
contains text "some text"], or /main/path[elem2
contains text "some text"].

elem (or /elem) Indexes all elements named elem which are direct children of the index’
main path, like elements with path /main/path/elem. If this sub-path
uses the option VALUE_COMPARISON, it will be used in a query such
as /main/path[elem = "value"]. If using the sub-path option
FULL_TEXT_INDEX, it could be queried with /main/path[elem
contains text "some text"].

elem/elem2 This is a trivial extension of the previous example. Elements with path
/main/path/elem/elem2 will be indexed.

{ns}elem Indexes all elements with the namespace URI ns and the local name elem
which are direct children of the index’ main path, so elements with path
/main/path/{ns}elem.

{ns}* Indexes all elements in the namespace URI ns which are direct children of
the index’ main path.

{*}elem Indexes all elem elements in any namespace (including elements in no
namespace) which are direct children of the index’ main path.

//elem This path will match any elem node. However, each distinct element path will
be indexed separately. Assuming sub-path option VALUE_COMPARISON,
the index will be used for queries like /main/path[elem = "value"],
or /main/path[A/B/C/elem = "value"] but not for a query such as
/main/path[//elem = "value"].

//* This path will match any element. Therefore it can be used to index the
contents of every single node. But in order to query it, the query must still
specify the actual path to be queried. NoteCombining this sub-path with the
sub-path options FULL_TEXT_INDEX and INCLUDE_DESCENDANTS
might create a very large index, depending on your XML document structure.
It will cause all tokens from descendant elements to be included in parent
elements. See also Multipath index limitations, page 160.

@attr (or /@attr) Indexes the attribute attr of the element corresponding to the index’
main path, i.e. the attribute with the path /main/path/@attr. If
this sub-path uses option VALUE_COMPARISON, it will be used in
a query such as /main/path[@attr = "value"]. Using option
FULL_TEXT_INDEX, it could be queried with /main/path[@attr
contains text "some text"].

154 EMC Documentum xDB Version 10.5 Manual

Managing Indexes

Sub-path specification Description

@* (or /@*) A wildcard matching all attributes of the element corresponding to the
main path of the index. Assuming sub-path option FULL_TEXT_SEARCH,
such a sub-path configuration would allow the index to speed up queries
such as /main/path[@attr contains text "some text"], or
/main/path[@attr2 contains text "some text"].

elem/@attr Indexes the attributes with the path /main/path/elem/@attr.

//elem/@attr This path will match the attribute attr of any elem node. However,
each distinct attribute path will be indexed separately. So, assuming
sub-path option VALUE_COMPARISON, the index will be used
for queries like /main/path[elem/@attr = "value"], or
/main/path[A/B/C/elem/@attr = "value"] but not for a query
like /main/path[//elem/@attr = "value"].

@{ns}attr Indexes the attribute with the namespace URI ns and the local name attr
of the element that corresponds to the index’ main path, i.e the attribute with
path /main/path/@{ns}attr.

@{ns}* Indexes all attributes in the namespace URI ns of the elemt that corresponds
to the index’ main path.

@{*}attr Indexes all attr attributes in any namespace (including elements in no
namespace) of the element that corresponds to the index’ main path.

//{ns}*/@attr This path will match the attribute attr of any element in the namespace URI
ns. Each distinct attribute path will be indexed separately.

Sub-path specification

Multipath indexes use the following syntax for sub-paths:

spec := attr | ((relpath | abspath) (’/’ attr)?)

relpath := name elementstep*

abspath := ’/’ | elementstep+

elementstep := (’/’ | ’//’) name

attr := ’@’ name

name := (uri? wildcard) | ((uri | uriwildcard)? localname)

uri := ’{’ ([^&}] | reference)* ’}’

wildcard := ’*’

uriwildcard := ’{’ wildcard ’}’

In these specifications localname is an XML name and reference is an XML character or
predefined entity reference.

EMC Documentum xDB Version 10.5 Manual 155

Managing Indexes

Differences between multipath and path indexes

Users familiar with path indexes may be confused by the similarities and differences between path
indexes and multipath indexes. The table below describes differences between both index types.

Table 24 Differences between multipath indexes and path indexes

Aspect for
comparison

Multipath index Path index

Indexing multiple
elements at the same
time, in order to be
able to query for all
of these elements at
the same time

Multipath indexes may have several different
sub-paths indexed, and each sub-path is indexed
independently of the others. So it is possible to
query for each sub-path separately, or for all of
them together.

Path indexes may index several
different descendants of a base path
through the syntax

/main[a + b]
but only documents with both a
and b will be indexed. Therefore
querying this index through

/main[a = "value"]
is not possible.

Indexing attributes
of elements

Sub-paths may refer to attributes. Path indexes can index attributes
through the syntax

/elem[@attributeName].

Full-text
components

Multipath indexes do not impose limits on
the number of sub-paths that use the option
SubPathOptions.FULL_TEXT_SEARCH.

Path indexes can only have a single
element being indexed as a full-text
index. Therefore, you cannot
create an index with path

/path[
elem<FULL_TEXT::> +
elem2<FULL_TEXT::>].

Indexing elements as
both by value and as
tokenized full-text

Multipath indexes allow a sub-path to specify

SubPathOptions.VALUE_COMPARISON
together with

SubPathOptions.FULL_TEXT_SEARCH,
and in that case all elements matching the
sub-path both by value as well as full-text will
be indexed.

Path indexes also allow you to
specify a node twice: once being
indexed per value, and another as
full-text, but as you have to search
for these elements together, this is
ineffective.

Multipath index merge
Over time, as update operations on the multipath index create new sub-indexes, the number of
sub-indexes can become very large. As this can reduce indexing and query performance, smaller
sub-indexes periodically merge into larger ones, keeping the number of sub-indexes at a minimum,
and ideally producing a single, optimized index.

156 EMC Documentum xDB Version 10.5 Manual

Managing Indexes

The merging policy is configurable. This requires care, because merging has direct impact on the
overall performance of the system. While it is desirable to keep the number of sub-indexes small,
sub-index merging can be time-consuming and CPU-intensive, and if done too often it can affect the
perfomance of the page server. The following index merging tasks can be fine-tuned to achieve an
optimal and balanced level of indexing and query performance:

Lucene internal
segment merge

During indexing, Lucene segments are merged into larger ones as new
data is being indexed.

Final merge An asynchronous process merges sub-indexes into a single, optimized
“final” index. A final merge is very I/O and CPU-intensive, and can take
a long time to finish. Especially for large indexes, it should not be run
during performance-critical periods.

Non-final merge An asynchronous process merges smaller sub-indexes into larger ones. A
non-final merge is more lightweight than a full final merge, so non-final
merge can be executed more frequently.

The asychronous merging tasks produce new sub-indexes as a result of merging smaller sub-indexes.
The original sub-indexes will eventually be deleted by a periodic index cleaning task.

For information on configuration settings for merging and cleaning tasks, refer to Multipath index
properties, page 157.

Multipath index properties

Various aspects of multipath indexing can be configured using settings in the file xdb.properties,
page 66.
Note: For the settings to take effect, the file xdb.properties must be present in the page server’s
Java classpath.

The settings are global for the page server, and apply to all multipath indexes in the federation. It is
possible to override certain settings (such as finalMergingInterval and finalMergeNoLogging)
for specific indexes using the API.

Table 25 Multipath index settings

Property Description

xhive.lucene.cleanMergeInterval The interval (in seconds) between the start of non-final
merges. Default is 300.

xhive.lucene.finalMergingInterval The interval (in seconds) between the start of final
merges. Default is 14400.

xhive.lucene.finalMergingBlackout The final merges blackout time window.

This defines a daily period during which final merges are
forbidden, using the form StartHour-EndHour (in
24h format). Default value is 0 (no blackout period).

Example: 8-20 (blackout from 8AM to 8PM)

xhive.lucene.cleaningInterval The interval (in seconds) between the start of periodic
index cleaning tasks. Default is 120

EMC Documentum xDB Version 10.5 Manual 157

Managing Indexes

Property Description

xhive.lucene.blacklistsKeep Indicates whether or not to keep blacklists. Default is
false.

xhive.lucene.cleaningBlacklistInterval The interval (in seconds) between the start of
periodic cleaning of blacklists. Only used if
xdb.lucene.blacklistsKeep is set to false.

Default is 300.

xhive.lucene.refreshBlacklistCacheDuringMerge Determines whether the blacklist cache will be refreshed
during non-final merges. This may improve query
performance under heavy ingest. Default is false

xhive.lucene.finalindex.size The maximum number of sub-indexes in final-merged
indexes. Default is 1.

xhive.lucene.nonFinalMaxMergeSize The maximum size (in bytes) of a sub-index to be
included in a non-final merge. Default is 300000000

xhive.lucene.mergeFactor The number of documents in a segment that triggers the
internal Lucene merge. Default is 10.

xhive.lucene.maxMergeDoc The maximum number of documents in one segment.

Default is 1000000

xhive.lucene.maxSegmentsForOptimization The maximum number of segments in a sub-index.

Default is 5.

xhive.lucene.parallelExecutionFinalMerge-
CrossNodes

Indicates whether multiple final merges can be executed
in parallel if there are multiple multipath indexes. Default
is true.

xhive.lucene.mergingPolicyThreadPoolSize The maximum number of threads to use for the
asynchronous merging tasks. Default is 8

xhive.lucene.finalMergeNoLogging Indicates whether transaction logging is disabled for final
merge operations. Default is true.

Note: Disabling of transaction logging for final merges
significantly improves their performance, but it means
that incremental backups will not include corresponding
transaction log records for the multipath index. During
incremental backup of a federation that includes a
multipath index, either enable final merge transaction
logging, or else exclude from the incremental backup
all multipath indexes that have final merge transaction
logging disabled. To back up such indexes, consider
using standalone backup or library backup.

xhive.lucene.ramBufferSizeMB The size (in MB) for the Lucene index writer
RAMDirectory. Default is 3.

xhive.lucene.useCompoundFile Indicates whether to use the Lucene compound file
format. Default is false.

xhive.lucene.temp.path The temporary directory for index entries.

Default is blank (the system default temporary directory).

158 EMC Documentum xDB Version 10.5 Manual

Managing Indexes

Property Description

xhive.lucene.queryResultsWindowSize The maximum number of documents returned by one
query. Default is 12000.

xhive.lucene.ratioOfMaxDoc The maximum term frequency (0-1) for terms to be
accepted by wildcard queries. (Term frequency is
calculated during indexing and stored with the Lucene
index.)

For example, if the frequency is 0.5 or higher, the
queries will not accept terms that occur in more than
half of the documents in the index, so that searching for
an.* will be unlikely to return any hits for common
words such as “and”.

Default is 1.

xhive.lucene.termsExpandedNumber The cutoff number of terms returned by wildcard queries.

Default is 65536

xhive.lucene.fuzzyQueryPrefixLength The number of leading characters to ignore when
assessing similar terms in fuzzy queries. Default is 0.

xhive.lucene.fuzzyTermsExpandedNumber The maximum number of similar terms to return by fuzzy
queries. Default is 2147483647.

xhive.lucene.facetPathPatternMatch For facet search, indicates whether to use the matching
sub-path (false) or the XML node path (true) as the
facet key. Default is false.

xhive.lucene.searchValueForFtcontains Indicates whether sub-paths that specify the
VALUE_COMPARISON option, but not the
FULL_TEXT_SEARCH option, can be used when
evaluating full-text search queries. Default is false.

xhive.lucene.ignoreValueComparisonScore Indicates whether to ignore the score for value
comparison queries on a multi-path index. Default is
true.

xhive.lucene.strictIndexTypeCheck Determines whether to perform strict type checking on
indexed sub-paths. Default is true.

If set to false, sub-paths with inconsistent value data
types can still be indexed (as string).

Note: This may cause non-conformant behavior with
respect to the XQuery specification.

xhive.lucene.fieldCacheSize The maximum number of entries in the query cache for
Lucene fields and their corresponding sub-paths. Default
is 4096.

xhive.lucene.maxBooleanClause The maximum allowed number of Lucene
BooleanClauses in a BooleanQuery. Default is 65536.

EMC Documentum xDB Version 10.5 Manual 159

Managing Indexes

Multipath index limitations
Individual subpaths in multipath indexes that are configured as full text fields will only tokenize all
text below the node if they are configured with the INCLUDE_DESCENDANTS option. This means that
such a full text field is not usable for XQFT full-text queries of the form /node[subpath contains
text ’hello’].

XQFT queries will only work together with sub-paths that either specify the INCLUDE_DESCENDANTS
option or with sub-paths that index all fields below a path, e.g., //*.

Furthermore, sub-paths that do not have the INCLUDE_DESCENDANTS option enabled do not correctly
support phrase queries if the phrase spans more than one XML element.

Given this XML fragment:
<doc>
<field>
<value1>Hello</value1>
<value2>World</value2>

</field>
</doc>

and a multipath index on /doc with a full text sub-path //* but no INCLUDE_DESCENDANTS option,
phrase queries like /doc[field contains text ’hello world’] will return no results, even
though they should according to the XQFT specification.

A possible workaround is to enable the INCLUDE_DESCENDANTS option. However, for sub-paths
like //* this may cause a significantly larger index, as every parent element will contain all tokens
of its descendant elements.

Multipath indexing methods
While the main path is passed as an argument when creating a multipath index, all other options
(including sub-paths) are specified through a configuration object. This is different from other
xDB indexes, where general options are specified through an int bit mask. The configuration
object must be of type XhiveMultiPathIndexConfigurationIf. It can be obtained through
XhiveIndexListIf.createExternalIndexConfiguration(). Notice that this call will return an object of
type XhiveExternalIndexConfigurationIf, which extends XhiveMultiPathIndexConfigurationIf.

Sub-paths are specified through a string representing a path expression used to match nodes for
indexing, and a XhiveSubPathIf instance which carries the options for indexing the matched nodes.

The configuration option VALUE_COMPARISON is String by default, and can be changed using
XhiveSubPathIf.setType(int).

Samples

CreateMultiPathIndex.java

API documentation

com.xhive.index.interfaces.XhiveIndexIf

160 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/CreateMultiPathIndex.java
./../apidocs/com/xhive/index/interfaces/XhiveIndexIf.html

Managing Indexes

com.xhive.index.interfaces.XhiveSubPathIf

com.xhive.index.interfaces.XhiveMultiPathIndexConfigurationIf

com.xhive.index.interfaces.XhiveExternalIndexConfigurationIf

com.xhive.index.interfaces.XhiveIndexWithPathsAnalyzer

Customizing the score of multipath indexes
Multipath indexes allow customization of the score of the whole index through a user-defined class.
Like the analyzer, this class, must be set in the configuration object before the creation of the index.
This can be done through XhiveMultiPathConfigurationIf.setScoreCustomizer(String).

The XhiveScoreCustomizerIf interface extends Lucene’s Similarity methods by adding a
XhiveScoreCustomizerIf.getScoreBytes method. The main difference with Lucene’s Similarity is
that the byte array, known as payload in Lucene, is not passed to index through the Analyzer but after
the text has been tokenized.

If this interface is used, and if byte arrays have been stored for a given field, when the index is queried,
the user-set implementation of XhiveScoreCustomizerIf will have access to this data, and will be
able to customize the score of the result through its return value.

Samples

CreateMultiPathIndex.java

API documentation

com.xhive.index.interfaces.XhiveScoreCustomizerIf

com.xhive.index.interfaces.XhiveMultiPathIndexConfigurationIf

Value indexes
A value index stores elements by an element value or attribute value. Value indexes can be created for
a library or a document. An index list can contain multiple value indexes.

Value indexes support namespaces. Use of namespaces requires the indexed documents to be parsed
with the namespaces option enabled, and the value index to be created with Element URI or Attribute
URI parameters.

xDB supports value indexing of:

• elements by element value.
• elements by attribute value.
• named elements by attribute value.

Using value types for value indexes
The following value types can be used to build a value index:

• TYPE_STRING - String value.

EMC Documentum xDB Version 10.5 Manual 161

./../apidocs/com/xhive/index/interfaces/XhiveSubPathIf.html
./../apidocs/com/xhive/index/interfaces/XhiveMultiPathIndexConfigurationIf.html
./../apidocs/com/xhive/index/interfaces/XhiveExternalIndexConfigurationIf.html
./../apidocs/com/xhive/index/interfaces/XhiveIndexWithPathsAnalyzer.html
./../../src/samples/manual/CreateMultiPathIndex.java
./../apidocs/com/xhive/index/interfaces/XhiveScoreCustomizerIf.html
./../apidocs/com/xhive/index/interfaces/XhiveMultiPathIndexConfigurationIf.html

Managing Indexes

• TYPE_LONG - Long integer value.
• TYPE_INT - Integer value.
• TYPE_FLOAT - Single-precision floating point value.
• TYPE_DOUBLE - Double-precision floating point value.
• TYPE_DAY_TIME_DURATION - Integer values for day, time, and duration.
• TYPE_DATE_TIME - Integer values for day and time.
• TYPE_DATE - Integer value for date.
• TYPE_TIME - Integer value for time.
• TYPE_YEAR_MONTH_DURATION - Integer value for year, month, and duration.

By default, a value index contains string values.

All value types match XML Schema simple data types. The indexed documents do not necessarily have
to comply with an XML schema that specifies the value types. As long as the values of all elements
and attributes that are placed in the index match the value syntax, the index is constructed properly.

When selecting a type for an index, it is important to ensure that the indexed data adheres to the
value type. If not, xDB throws an exception.

All data can be indexed using the string type. However, it can be useful to index data that includes
decimal values using the double-precision floating point value. The sorting is based on the type
rather than a lexicographical order. Different lexicographical representations of the same value are
registered under the same index key.

When the XQuery processor uses an index to look for an integer value, it only looks for an integer
value index. Note: XQuery uses value indexes, but they are not integrated within XPath and XPointer.

Value indexing methods
Value indexes are live indexes that are automatically updated when elements or attributes are inserted,
replaced, or removed.

Value indexes support namespaces. Whenever namespaces are used, the indexed documents must have
been parsed with the XhiveIndexIf.PARSER_NAMESPACES_ENABLED option and the elementURI
or attributeURI parameters must be supplied to the addValueIndex() method.

The following example code creates a value index, using the addValueIndex() method. The parameters
that are supplied to the addValueIndex() method determine the exact type of the value index.
// create a value index that stores elements by element value
XhiveIndexIf nameIndex =
indexList.addValueIndex(nameIndexName, null, "NAME", null, null);

// create a value index that stores elements by attribute value
XhiveIndexIf IDIndex = indexList.addValueIndex(idIndexName, null, null, null, "ID");

// create a value index that stores named elements by attribute value
XhiveIndexIf personByFatherIndex =
indexList.addValueIndex(personByFatherIndexName, null, "PERSON", null, "FATHER");

162 EMC Documentum xDB Version 10.5 Manual

Managing Indexes

Samples

ValueIndexIndex.java

API documentation

com.xhive.index.interfaces.XhiveIndexListIf

Full-text indexes
A full-text index is a special form of value index that stores elements by element text values or an
attribute value. Full-text indexes are more versatile but slower than value indexes, especially during
updates. Full-text indexes support namespaces. Use of namespaces requires the indexed documents to
be parsed with the namespaces option enabled, and the full-text index to be created with Element URI
or Attribute URI parameters.

An index list can contain multiple full text indexes. Full-text indexes can be used to:

• Search for individual words of an element value.

• Perform complex Boolean and wildcard queries.

• Index all the underlying text of an element and subelements.

There are some index options specifically for full-text indexes:

Table 26 Full-text index options

Index option Description

FTI_GET_ALL_TEXT The element is indexed by its string value, which is
computed from the string value of all descendant nodes.
If this option is not enabled, the element can only have
text-child nodes, but the index updates faster.

FTI_SUPPORT_PHRASES Optimizes the index to perform phrase queries. Using this
option increases the index size.

FTI_SUPPORT_SCORING Stores extra information about the indexed tokens to
improve the score calculation quality.

FTI_SA_ADJUST_TO_LOWERCASE Converts the indexed terms to lower case to support
queries that are not case-sensitive.

FTI_SA_FILTER_ENGLISH_STOP_WORDS Applies a stop word filter. Words on the stop word list
are not indexed.

FTI_INCLUDE_ATTRIBUTES Indexes words that are part of the element attribute values.
This option has no effect on full-text indexes placed on
attributes. This option should be used in conjunction with
the include-attrs option and the xhive:fts function.

FTI_LEADING_WILDCARD_SEARCH Enables to search the index for terms with a leading
wildcard. This option improves the speed of
"PREFIX*SUFFIX" type searches. This option does not
slow down searches without wildcards, but may increase
the time it takes to update the index.

EMC Documentum xDB Version 10.5 Manual 163

./../../src/samples/manual/ValueIndexIndex.java
./../apidocs/com/xhive/index/interfaces/XhiveIndexListIf.html#addValueIndex(java.lang.String, java.lang.String, java.lang.String, java.lang.String, java.lang.String)

Managing Indexes

Full-text indexing methods
Specifying a custom analyzer class allows finer control over the full-text indexing process. The
analyzer must be a org.apache.lucene.analysis.Analyzer subclass to act as a tokenizer. For more
information about specifying an analyzer, see Using the xhive:fts function, page 201.

Whenever namespaces are used, the indexed documents must have been parsed using the
XhiveIndexIf.PARSER_NAMESPACES_ENABLED option, and the elementURI or attributeURI
parameters must be supplied to the addFullTextIndex() method.

Example

The following example code uses the addFullTextIndex() method to create a full-text index. The
parameters that are supplied to the addFullTextIndex() method determine the exact value index type.
// create a full text index on the text-contents of the name elements
XhiveIndexIf nameIndex = indexList.addFullTextIndex(nameIndexName,

null, "NAME", null, null, null,
XhiveIndexIf.FTI_SUPPORT_PHRASES | XhiveIndexIf.FTI_GET_ALL_TEXT);

Samples

IndexAdder.java

API documentation

com.xhive.index.interfaces.XhiveIndexIf

Metadata value indexes
Metadata value indexes are like value indexes, but instead of indexing the content of a node, they
index the value of a metadata entry. The index key is the value of the metadata key, and index entries
point to individual documents.

Metadata indexes are used for XQueries of the form:
doc(’...’)[xhive:metadata(., ’key’) = ’value’]

Metadata full text indexes
Metadata full text indexes are like metadata value indexes, but instead of indexing the metadata value,
they create a full text index of the value of a metadata entry. The index key is the value of the metadata
key, and index entries point to individual documents.

Metadata full text indexes are used for XQueries of the form:
doc(’...’)[xhive:metadata(., ’key’) contains text ’value’]

.

164 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/IndexAdder.java
./../apidocs/com/xhive/index/interfaces/XhiveIndexIf.html

Managing Indexes

Library indexes
A library index indexes the content of a library. Library indexes must have a unique name.

There are two types of library indexes:

• Library ID index: uses the IDs of the library content objects, such as documents, libraries, and
BLOBs. Library ID indexing is efficient when many content objects are stored in the library.

• Library name index: uses the names of the library content objects, and improves performance of
XLink operations and full path XPointer queries.

By default, a library has a library name index. The root library also has a library ID index. A library
can only have one library ID index and one library name index. Adding a second library ID or library
name index generates an exception.

Names are not mandatory for library content, and some content is not included in the index.

Library indexing methods
A library index indexes the content of a library. Library indexes must have a unique name and
are stored in an XhiveIndexListIf list index. The size of an existing index can be found through
XhiveIndexIf.getStoragePages().

Creating a library ID index

A library ID index improves the performance and scalability of the get(long Id) method in
XhiveLibraryIf interface. Library ID indexing is efficient when many content objects are stored in
the library.

The following code sample shows how to add a library ID index:
//get the index list of the library
XhiveIndexListIf indexList = library.getIndexList();

//add a library id index to the library
String idIndexName = "Library ID Index";
XhiveIndexIf idIndex = indexList.addLibraryIdIndex(idIndexName);

Creating a library name index

A library name index improves the performance and scalability of the get(String name) method in
the XhiveLibraryIf interface, and improves performance of XLink operations and full path XPointer
queries. Names are not mandatory for library content and some content is not included in the index.

The following code sample shows how to add a library name index:
//add a library name index to the library
String nameIndexName = "Library Name Index";
XhiveIndexIf nameIndex = indexList.addLibraryNameIndex(nameIndexName);

EMC Documentum xDB Version 10.5 Manual 165

./../apidocs/com/xhive/index/interfaces/XhiveIndexIf.html#getStoragePages()

Managing Indexes

ID attribute indexes
An ID attribute index stores elements by their unique element ID. Users typically do not access
ID attribute indexes directly, they are used implicitly to improve the performance of element ID
operations and XQuery/XPath/XPointer queries.

ID attributes can be specified in the DTD or XML-schema associated with a document.

ID attribute indexes can be created for a library or a document. Element IDs are only unique within the
context of a document. Since a library can contain more than one document, each document could use
the same element IDs. The index does not limit the number of entries for a given key.

ID attribute indexing methods
Typically, ID attribute indexes are used implicitly to improve the performance of the
getElementById(String elementId) DOM method and XQuery/XPath/XPointer queries.

ID attributes can be specified in the DTD or XML-schema associated with a document. Attributes that
are created using the createAttribute(String name) DOM call are converted to ID attributes if they are
defined in the DTD associated with the document. Instead of using a DTD, ID attributes can be created
using the createIDAttribute(String name) method in the XhiveDocumentIf interface.

The indexes use the XhiveIndexIf class and are stored in an XhiveIndexListIf index list. Index lists
can store indexes of different types. Each index in the index list must have a unique name and an
index list can only contain one ID attribute index.

Examples

The following code sample shows how to add an ID attribute index to a document.
//Get the indexlist
XhiveIndexListIf indexList = document.getIndexList();

//add the id attribute index to the indexlist of the document if the index is not found
String indexName = "ID Attribute Index";
XhiveIndexIf index = indexList.getIndex(indexName);
if (index == null){

index = indexList.addIdAttributeIndex(indexName);
}

XQuery, XPath, and XPointer queries, and the getElementsById(String elementId) method use ID
attribute indexes. Users typically do not access this type of index directly. However, the following
code sample shows how to view the keys of an ID attribute index:
//Print the element of key = "p3"
String key = "p3";

XhiveNodeIteratorIf nodeIter = index.getNodesByKey(key);
if (nodeIter.hasNext()){
System.out.println(" Element = " + nodeIter.next());

}

166 EMC Documentum xDB Version 10.5 Manual

Managing Indexes

Element name indexes
An element name index stores elements by name. Element name indexes can be created for a library or
document.

xDB supports two types of element name indexes:

• Element name index - All element names are indexed.
• Selected element name index - Only a selection of element names is indexed.

The selected element name index can be updated much faster than the element name index.

Element names in the selected element name index can be specified in one of the following ways:

• String nodeName , when the namespaceURI of the element is null.
• String namespaceURI + ’ ’ + localName , when the namespaceURI of the element is not null.
• String ’{’ + namespaceURI + ’}’ + localName , when the namespaceURI of the element is not null.

The keys used for indexing the elements are strings that contain both namespaceURI and local
name, separated by one single space character. For example, an element with the namespaceURI
http://www.x-hive.com and the local name chapter is indexed with the key http://www.x-hive.com
chapter.

Element name indexing methods

Example

The following code sample shows how to create a selected element name index.
//Add a selected element name index
String[] names = {"NAME", "BORN", "WIFE"};
XhiveIndexIf selectedElementNameIndex = indexList.getIndex(selectedElementIndexName);
if (selectedElementNameIndex == null){
indexList.addElementNameIndex(selectedElementIndexName, names);

}

For namespaces, the selected element names can be defined as follows:
//Define the names of an element name index with namespaces
String[] names = {"http://www.x-hive.com chapter", "{http://www.x-hive.com}owner"};

Concurrent indexes
Concurrent indexes are not locked for the duration of the transaction when accessed or modified.
Only the used pages are latched, and only for the time that they are read or modified. This process
improves concurrency at the expense of some extra overhead when using the indexes. Whether the net
effect is beneficial depends on your application.

EMC Documentum xDB Version 10.5 Manual 167

Managing Indexes

Concurrent indexing methods
To specify an index as concurrent, use the XhiveIndexIf.CONCURRENT flag when creating the index.

The following restrictions apply to concurrent indexes:

• When using the XhiveIndexIf.getKeys() method outside of XQuery, the index can return keys that
have no nodes.

• Concurrent indexes do not provide phantom protection. If the index is read a second time during
the same transaction, new keys and nodes that have been committed since the previous lookup can
appear. Keys and nodes read can never disappear, because the actual data read is still read locked
for the duration of the transaction.

• Concurrent indexes do not have a separate authority value. The XhiveIndexIf.getAuthority() method
returns the authority of the owning library child.

Non-blocking incremental indexes
The regular indexes acquire a write lock on a library until the building process, which runs in a single
transaction, completes. If you need to build or rebuild an index on a large library without blocking
updates to it, a special implementation of an index should be used: XhiveIndexInConstructionIf. It
allows the index to be built on demand in as many separate transactions as you need and in batches
of any size. It supports concurrent indexing sessions. These indexes are created in a dedicated
XhiveIndexInConstructionListIf and, after the building process completes, you move them to the
ordinary index list to be used by queries.

The supported indexes are: PathValue, MultiPath, Value, Metadata, IdAttribute and ElementName.

Note: This feature does not support versioned documents.

Sample

IndexInConstruction.java

API documentation

com.xhive.index.interfaces.XhiveIndexInConstructionIf

com.xhive.index.interfaces.XhiveIndexInConstructionListIf

Context conditioned indexes
Context conditioned indexes are deprecated.

A context conditioned index stores node objects by a user-defined key. A node can be an element,
text node, processing instruction, comment, or document. Each context conditioned index has a
user-defined index node filter. The filter is used to determine which nodes are included in the index
and what key is used.

Context conditioned indexes are non-live indexes that are not automatically updated. An application
program must update the indexes periodically.

168 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/IndexInConstruction.java
./../apidocs/com/xhive/index/interfaces/XhiveIndexInConstructionIf.html
./../apidocs/com/xhive/index/interfaces/XhiveIndexInConstructionListIf.html

Managing Indexes

Context conditioned indexes are used for:

• Searching for elements by element value or attribute value when the search cannot use value indexes.
• Complex queries.
In certain cases, a context conditioned index is faster than the equivalent XQuery, XPath, or
XPointer query.

Context conditioned indexing methods

Note: Context Conditioned Indexes are deprecated as of xDB version 10.0.

To create a context conditioned index:

1. Get a handle to the index list, similar to the following:

// get the index list that belongs to this database
XhiveIndexListIf indexList = charterLib.getIndexList();

2. Create an XhiveCCIndexIf object, similar to the following:

// create an XhiveIndexIf object
String indexName = "Index of even numbered chapters";
XhiveCCIndexIf index = (XhiveCCIndexIf)indexList.getIndex(indexName);

if (index != null) {
// remove existing index first
indexList.removeIndex(index);

}

3. Create an index node filter using the XhiveIndexNodeFilterIf interface to define which nodes to
include in the index, similar to the following:

index = (XhiveCCIndexIf)indexList.addNodeFilterIndex
("samples.manual.SampleIndexFilter",indexName);

4. Add context conditioned index entries for a document using the indexDocument() method in the
XhiveCCIndexIf interface, similar to the following:

index.indexDocument(newDocument);

Example

The code sample below uses the created index to retrieve all titles of even number chapters:
Iterator keyIter = index.getKeys();
while (keyIter.hasNext()) {
String key = (String) keyIter.next();
System.out.println(key);

}

The following example code uses the getNodesByKey() method to retrieve nodes from the index
based on a given key:
XhiveNodeIteratorIf nodesFound = index.getNodesByKey("AMENDMENTS");

EMC Documentum xDB Version 10.5 Manual 169

Managing Indexes

while (nodesFound.hasNext()) {
XhiveNodeIf docFound = (XhiveNodeIf)nodesFound.next();
System.out.println(docFound.toXml());

}

Optimizing index performance
To achieve the best index performance:

• Do not add more indexes than required.

• Reduce index scope.

• Make indexes as selective as possible. For example, use selected element name indexes instead of
default element name indexes.

• Create indexes after loading the data. Indexing existing data is faster overall than updating indexes
each time a new data item is added.

Index scope

xDB supports nested library structures. Users are free to select the scope context of an index. For
example, the scope of the root library is larger than the scope of a nested library. The smaller the index
scope, the better the performance of data updates and queries can be.

Note: The scope of library indexes is of no importance because library indexes only apply to the
direct children of the library.

Index selectivity

In general, indexes provide the best query and update performance when the index is as selective as
possible. Each key must have the smallest possible number of nodes.

Library indexes have both unique names and IDs, provide optimal selectivity, and therefore have
excellent query and update behavior. Value indexes and ID attribute indexes are the next best choice
for selective indexes. Element name indexes are not selective because most documents do not have
unique element names. To maintain a good data update performance, it is better to use selected
element name indexes instead of the default element name indexes. Selected element names only
index a subset of all elements.

Ignoring indexes

Queries can disable certain indexes by providing a comma-separated list of index names with the
xhive:ignore-indexes option. These indexes are not used to optimize the associated query.
declare option xhive:ignore-indexes ’myindex1,ftsindex’;
for $x in ...

170 EMC Documentum xDB Version 10.5 Manual

Managing Indexes

Indexes and timezones
The following indexes support date-time data types that can contain timezone information like
xs:date, xs:dateTime and xs:time:

• Value Index, page 161

• Path Index, page 151

• Mutipath Index, page 153

To enable fast lookups, indexes have to store the index keys by order. It is not possible to mix date-time
keys with and without timezone information, because the ordering of the keys would then depend on the
implicit timezone of a query. For more information on implicit timezones, see xhive:implicit-timezone.

To ensure non-ambigous ordering, xDB now stores date-time keys with timezone PT0H. This is
achieved as follows:

• Key values with timezone information are normalized to PT0H before they are stored in the index.

• Key values without timezone information are assigned to timezone PT0H.

Note: Because all stored date-time keys have timezone PT0H, this may lead to unexpected query
results in older applications that store date-times without timezone information.

For example, consider using a Path index with path:
//doc[creationDate<DATE_TIME>]

and query:
let $dt := xs:dateTime("2007-09-14T08:00:00")
return //doc[creationDate = $dt]

If the query does not use the index then the result of the comparison between creationDate and
$dt is not depending on the implicit timezone of the query. However, when the index is used, the
query compares date-times with timezone information (creationDate) to a date-time without
timezone information ($dt). According to the XPath and XQuery Functions and Operators 3.0,
fn:dateTime-equal, the date-time without timezone information must be adjusted to the implicit
timezone before comparison. The result of this comparison now depends on the implicit timezone,
even if the stored date-times do not depend on timezone information.

Note: To avoid unexpected timezone adjustments, it is now good practice to always set the implicit
timezone to PT0H. Existing applications which currently use date-times without timezone should be
modified accordingly.

EMC Documentum xDB Version 10.5 Manual 171

http://www.w3.org/TR/2013/CR-xpath-functions-30-20130521/#func-dateTime-equal
http://www.w3.org/TR/2013/CR-xpath-functions-30-20130521/#func-dateTime-equal

Chapter 10

XQuery

This chapter contains the following topics:

• Working with XQueries
• Working with XQuery methods
• External XQuery variables and functions
• Accessing documents and libraries with XQuery
• XQuery error reporting
• XQuery options and extension expressions
• XQuery extension functions
• Using indexes in XQuery
• Proprietary XQuery extension to order by
• Using type information in XQuery
• XQuery full-text search
• Using the xhive:fts full-text search function
• XQuery performance tuning
• XQuery collation support
• XQuery Profiler
• XQuery profiling methods
• XQuery implementation

Working with XQueries
This chapter discusses the use of XQuery in xDB applications, describes XQuery-related features and
utilities, and gives details on xDB’s implementation of XQuery.

Working with XQuery methods
To execute XQuery queries in xDB, you can use the executeXQuery(String query) method on the
XhiveNodeIf interface. It returns an XhiveXQueryResultIf that is an iterator over the result sequence.
Each element of the result is an instance of the XhiveXQueryValueIf object. For example:
XhiveNodeIf lc = ... ;
XhiveXQueryResultIf result = lc.executeXQuery("doc(’doc’)//item");

EMC Documentum xDB Version 10.5 Manual 173

XQuery

while (result.hasNext()) {
XhiveXQueryValueIf value = result.next();
// We know this query will only return nodes.
Node node = value.asNode();
// Do something with the node ...

}

Within the query, the context item (accessible via the . operator) is initially bound to the node on
which the query was executed:
XhiveNodeIf node = ...;
XhiveXQueryResultIf result = node.executeXQuery("./author/first, ./author/last,

./contents");
// using a Java 5 for each loop
for (XhiveXQueryValueIf value : result) {
// do something with the value ...

}

If you only want to display the result, you can use the toString() method on the values returned,
regardless of their type:

XhiveLibraryChildIf lc = ... ;
String query = ... ;
XhiveXQueryResultIf result = lc.executeXQuery(query);
while (result.hasNext()) {
System.out.println(result.next().toString());

}

For more control over serialization, nodes can be serialized using an LSSerializer obtained from a
library using XhiveLibraryIf.createLSSerializer().

If the query uses node constructors, nodes are created in a temporary document. If desired, these
nodes can be inserted into another document using the DOM importNode() method. If you want to
insert the nodes into a particular document, specifying an owner document for new nodes in the call
is more efficient than creating a temporary document and importing its nodes into the destination
document. For example:
XhiveLibraryChildIf lc = ... ;
XhiveDocumentIf doc = ... ; // Create new nodes in this document
XhiveXQueryResultIf result = lc.executeXQuery("<count>{count(//item)}</count>", doc);
// We know this query will only return a single node.
XhiveXQueryValueIf value = result.next();
Node node = value.asNode();
// Append it to the document element of destination document
doc.getDocumentElement().appendChild(node);

The query result is evaluated lazily each time the next() method is called on the result iterator. Avoid
calling result.next() within the same session after modification of searched documents or libraries, as
undefined results may occur. If you want to use the query output to modify the searched documents,
use extension function xhive:force() or the update syntax, page 211.

API documentation

com.xhive.dom.interfaces.XhiveNodeIf

174 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html

XQuery

External XQuery variables and functions
In xDB, declaring external variables and functions is not strictly necessary, but it is recommended for
compatibility with other XQuery implementations.

External variables

XQuery provides a way to import external values into the query scope (parameters). To use this feature
in xDB, create a query using the createXQuery(String query) method on a XhiveNodeIf interface.
This method parses the query, resolves module imports, and returns an XhiveXQueryQueryIf object
that represents the query.

Note: The XhiveXQueryQueryIf object is only valid for the current database session, so do not
try to use it across multiple sessions.

Example

XhiveNodeIf node = ...;
XhiveXQueryQueryIf query = node.createXQuery(

"declare variable $pi external; " +
"for $rad in doc(’radius.xml’)//radius " +
"return ($rad * $rad * $pi)");

query.setVariable("pi", java.lang.Math.PI);
Iterator<XhiveXQueryValueIf> result = query.execute();
...

XQFT Example

The syntax for using variables in XQFT (XQuery Full-Text) requires braces around the variable:
XhiveNodeIf node = ...;
XhiveXQueryQueryIf query = node.createXQuery(

"declare variable $term external; " +
"/book/chapter[. contains text {$term}]/title");

query.setVariable("term", "bicycle");
Iterator<XhiveXQueryValueIf> result = query.execute();
...

The XhiveXQueryQueryIf interface also provides a executeOn(XhiveNodeIf node) method, that
allows you to run the same query multiple times on different context items. When using executeOn(),
the initial context item points to the given XhiveNodeIf interface.

The XhiveXQueryQueryIf interface automatically maps the following Java types to their
corresponding XML Schema types.

EMC Documentum xDB Version 10.5 Manual 175

http://www.w3.org/TR/xpath-full-text-10/#doc-xquery10-FTWordsValue

XQuery

Table 27 Java type mapping

Java object type XQuery value type

boolean / java.lang.Boolean xs:boolean

java.lang.String xs:string

int / java.lang.Integer xs:int

long / java.lang.Long xs:long

java.math.BigInteger xs:integer

float / java.lang.Float xs:float

double / java.lang.Double xs:double

java.math.BigDecimal xs:decimal

javax.xml.namespace.QName xs:QName

javax.xml.datatype.XMLGregorianCalendar xs:dateTime and subtypes, depending on actual
schema type

javax.xml.datatype.Duration xs:duration and subtypes, depending on actual schema
type

java.sql.Time xs:time

java.sql.Timestamp xs:dateTime

java.sql.Date xs:date

java.util.Date xs:dateTime

java.util.Calendar xs:dateTime

org.w3c.dom.Node A node of the corresponding type, such as an element,
document, or similar.

All built-in DOM objects can be used directly, including the XhiveLibraryIf object. Nodes from
another DOM implementation are imported into the creation document for this XQuery. For more
information, see the XhiveXQueryQueryIf.setCreationDocument method.

Values that cannot be mapped are converted into a special Java value. For more information, refer to
Java objects and instance methods, page 218.

It is also possible to supply an Iterator over a sequence of objects. This can be especially handy
for executing XQuery queries over the results of other queries, effectively creating a lazily executed
XQuery pipeline. Iterators used by a query cannot be reused afterwards, not even by the same query.
The declared variable is empty if this query is run again.

Example

XhiveNodeIf node = ...;
Iterator<XhiveXQueryValueIf> subresult = node.executeXQuery(...);
XhiveXQueryQueryIf query = node.createXQuery(

"declare variable $values external; " +
"for $value in $values " +
"return $value + 5");

query.setVariable("values", subresult);

176 EMC Documentum xDB Version 10.5 Manual

XQuery

Iterator<XhiveXQueryValueIf> result = query.execute();
...

Custom functions

Custom functions can be set using the setFunction(String,
XhiveXQueryExtensionFunctionIf) method. For more information, see the
XhiveXQueryExtensionFunctionIf API documentation.

Due to optimizations, your function may be called at a different moment during evaluation than you
may expect. Therefore, it is best to avoid side effects in your extension functions.

Example

XhiveNodeIf node = ...;
XhiveXQueryQueryIf query = node.createXQuery(

"declare function circle-area($radius as xs:number) as xs:double external;" +
"for $rad in doc(’radius.xml’)//radius " +
"return circle-area($rad)");

query.setFunction("circle-area", new XhiveXQueryExtensionFunctionIf() {
public Object[] call(Iterator<? extends XhiveXQueryValueIf>[] args) {
double rad = args[0].next().asDouble();
double res = java.lang.Math.PI * rad * rad;
return new Object[]{ new Double(res) };

}
});
Iterator<XhiveXQueryValueIf> result = query.execute();
...

All methods for setting variables and functions can either:

• take a single string argument as the name and place the variable or function in the empty
namespace, or

• take two string arguments: a namespace URI and a local name.

Using a namespace URI requires declaring a prefix within the query.

API documentation

com.xhive.dom.interfaces.XhiveNodeIf#createXQuery(java.lang.String)

com.xhive.dom.interfaces.XhiveXQueryExtensionFunctionIf

EMC Documentum xDB Version 10.5 Manual 177

./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf#createXQuery(java.lang.String).html
./../apidocs/com/xhive/dom/interfaces/XhiveXQueryExtensionFunctionIf.html

XQuery

Accessing documents and libraries with
XQuery
Queries can refer to specific documents using the XQuery doc() function. The function argument is a
path, optionally starting with a / and containing names or IDs of libraries or documents, separated
by /. Paths that do not start with a / are evaluated relative to the context item or the parent library on
which the query is executed. If the path designates a library, the function returns a sequence of all
documents in that library and its descendant libraries.

Examples
doc("/"), (: All documents in the database :)
doc("/document.xml"), (: Document "document.xml" in the root library :)
doc("/MyLibrary"), (: All documents in "MyLibrary" :)
doc("/id:10"), (: The document(s) in the library with id "10" :)
doc("/mylib/mydoc"),
doc("/mylib/mysublib/id:1234")
doc("relative/path")
doc("../steps/work/./too")

The argument does not have to be a string literal but can be any expression returning a string.

If there is a context node, an absolute path expression starts at the root of the fn:root(.) context node.
In an outer expression it starts at the document or all documents in the library on which the XQuery
was executed, or the document containing an initial context node. You can use xhive:input() to access
the calling documents when there is a context node.
/docelem[//@id="2"]
(: this is equivalent to :)
xhive:input()/docelem[root(.)//@id="2"]

xDB also resolves URLs passed to the doc() function, like
doc(’http://example.com/mydoc.xml’) by retrieving the document and parsing it. The URL is
resolved using Java’s java.net.URL class, so all URI schemes supported by Java are available from
XQuery. Note: Applications can control this behaviour by means of an XQuery security policy.
Applications can control document resolution in XQuery through a custom XQuery resolver.

Note: In xDB, the collection() function is similar to the doc() function, except that collection()
can be called without any parameter.

XQuery error reporting
Errors within XQuery processing are reported by throwing exceptions extending the
XhiveXQueryException class, which in turn extends the XhiveException class. The
com.xhive.error.xquery package contains the XQuery-related exceptions:

Table 28 XQuery exceptions

Exception Thrown on

XhiveXQueryErrorException Semantic errors within the query. Thrown either directly or
on one of its subclasses: XhiveXQueryTypeException or
XhiveStackOverflowException.

178 EMC Documentum xDB Version 10.5 Manual

XQuery

Exception Thrown on

XhiveXQueryTypeException Errors related to the type system, for example when a
supplied value did not match the expected type. This
exception is a subclass of the XhiveXQueryErrorException
class.

XhiveStackOverflowException Stack overflows in user defined functions. This exception is
a subclass of the XhiveXQueryErrorException class.

XhiveXQueryParseException Parse errors in the query.

XhiveXQueryFTSParseException Incorrect FTS query.

XhiveXQueryUnknownFunctionException Use of an unknown function in a query.

XhiveXQueryUnsupportedException Use of an unsupported feature, or declared XQuery version
is greater than 1.0.

XhiveXQueryInternalException Internal query errors.

XQuery options and extension expressions
xDB supports a number of XQuery options, page 179. Those options can be set globally, or for a
specific part of a query.

• To set an option globally, you can use the following syntax in the query prologue: declare
option QName "Value";

Quotes around the Value parameter are required.

• To set an option for a specific part of a query, you can use an extension expression. Extension
expressions are specified using the following syntax: (# QName Value #)
{ expr }

The QName option is set for the entire inner expression. Quotes around the Value parameter are
optional. Multiple options can be set at once by writing multiple (# #) parts before the curly
braces part.

Table 29 XQuery options

Option Description

xhive:index-debug Checks if an index is used in a query. When its value is different from the
empty string, the query evaluator produces a message whenever a value is
looked up in an index selected by the optimizer.

xhive:queryplan-debug Similar to xhive:index-debug, but shows how the query is divided into
parts, the order in which the parts are executed, and which indexes and
options are looked up.

xhive:pathexpr-debug Similar to xhive:index-debug, but shows which low level expressions
within the XQuery are executed, and in what order.

EMC Documentum xDB Version 10.5 Manual 179

XQuery

Option Description

xhive:optimizer-debug Similar to xhive:queryplan-debug, but shows how the query optimizer tries
to create an index plan for a path expression. The output contains detailed
information about the indexes that are considered, including those that
are eliminated, and how a query plan is constructed. The contents of the
output are currently not documented.

xhive:ignore-indexes Provides a comma-separated list of indexes that should not be used to
optimize accesses.

xhive:index-paths-values Provides a comma-separated list of paths whose values to retrieve directly
from a multipath index.

xhive:fts-analyzer-class Configures a fully specified analyzer classname to use in text searches for
a full-text query or the xhive:fts function. If an index is present, the value
of this option takes precedence over the analyzer.

xhive:fts-implicit-conjunction Specifies the implicit conjunction operator for full-test searches. The only
valid values are AND and OR. Default is OR.

xhive:fts-similarity-class Configures a fully specified classname of the similarity that is used for
score calculation in the full-text query.

xhive:fts-thesaurus-class Configures a fully specified classname of the thesaurus handler used in the
full-text query. If a thesaurus handler is already set by API, the option
takes precedence.

xhive:timer Specifies a timer for the encapsulated expression.

xhive:max-tail-recursion-depth Specifies the maximum recursion depth for tail recursive functions.
Default is 10000.

xhive:implicit-timezone Specifies the implicit time zone, used by functions and operations in the
various date types, such as xs:date, if no explicit time zone is supplied.
The default implicit time zone is PT0H. When set to an empty string,
the local time zone is used. For more information refer to Indexes and
timezones, page 171.

xhive:return-blobs If set to true, changes the behaviour of the doc() and related functions to
return also BLOBs.

xhive:return-versions-all Changes the behaviour of the doc() and related functions to return all
versions of queryable documents. Other documents, such as versioned
documents that have not been created with the queryable parameter set to
true, will behave as if the option is not defined (meaning that they always
only return the latest version).

xhive:return-versions-at-date Changes the behaviour of the doc() and related functions to return the
last version of queryable documents that has a timestamp less than the
specificed timestamp. The timestamp is defined as an xs:dateTime string
(see example below). For regular documents the same caveat applies as
with xhive:return-versions-all.

180 EMC Documentum xDB Version 10.5 Manual

XQuery

Option Description

xhive:return-versions-before-
date

Changes the behaviour of the doc() and related functions to return all
versions of queryable documents that existed before the specificed
timestamp. Can be used in conjuction with xhive:return-versions-after-date
to define a closed date range. For regular documents the same caveat
applies as with xhive:return-versions-all.

xhive:return-versions-after-date Changes the behaviour of the doc() and related functions to return all
versions of queryable documents that existed after the specificed timestamp.
Can be used in conjuction with xhive:return-versions-before-date to define
a closed date range. For regular documents the same caveat applies as
with xhive:return-versions-all.

Examples

declare option xhive:index-debug "true";
doc("/products")//product[@product_id = "42"]

(# xhive:index-debug "true" #) {
doc("/products")//product[@product_id = "42"]

}

(# xhive:queryplan-debug "true" #)
(# xhive:pathexpr-debug "true" #) {
doc("/products")//product[@product_id = "42"]

}

(# xhive:queryplan-debug "true" #)
(# xhive:optimizer-debug "true" #) {
doc("/products")//product[@product_id = "42"]

}

declare option implicit-timezone ’PT10H’;
adjust-dateTime-to-timezone(xs:dateTime("2002-03-07T10:00:00-07:00"))

(# xhive:fts-implicit-conjunction ’AND’ #) {
document("/manual")//paragraph[xhive:fts(.,"long list of words")]/text()
}

declare option xhive:return-versions-at-date ’2001-01-01T00:00:00Z’;
doc("/products")//product[@product_id = "42"]

EMC Documentum xDB Version 10.5 Manual 181

XQuery

XQuery extension functions
xDB implements some useful functions that are not part of the XQuery Working Draft. These extension
functions are all in namespace http://www.x-hive.com/2001/08/xquery-functions which
is bound to prefix xhive by default.

• xhive:fts($context as node(), $query as xs:string, $options as xs:string) as xs:boolean
The function xhive:fts executes a query using xDB full-text index. The $options argument is
optional, and should be a string literal containing a semicolon-separated list of options. The
include-attrs option executes a query using a full-text index, but also looks in attributes of elements
under $context. For more information, refer to the section on using the xhive:fts full-text search
function, page 201.

Example:

doc("/library")//chapter[xhive:fts(title, "venice and merchant*")]

• xhive:evaluate($query as xs:string, [$var1 as xs:QName, $val1 as item()*, $var2 as xs:QName,
$val2 as item()*, ...]) as item()*
This function evaluates a single string argument as an XQuery query and returns the result of the
query. For example:

for $query in doc("/queries")//query
return
<queryresult>
{ $query }
<result>{ xhive:evaluate($query) }</result>

</queryresult>

The values for external query variables can be specified using additional arguments to the
xhive:evaluate() function. The number of these arguments must be even, and they must alternate
between QNames (name of the external variable) and items (value of the external variable).

• xhive:parse($doc-text as xs:string, $schema-hint as xs:string) as document-node()
xhive:parse($doc-text as xs:string) as document-node()

These functions take the serialized text of an XML document and parse it into a document. The
document is validated if it declares a schema using a validate-if-schema option. Validation against a
certain schema can be forced by passing a $schema-hint option. If the document is not well-formed,
not valid, or fails to parse for another reason, the function throws an error.

Example:

(: parse the contents of the given element
and return it as a document-node()

:)
xhive:parse(/channel/item[1]/content:encoded)

(: Take the given serialized document and store it in the DB :)
declare variable $doc-text as xs:string external;

182 EMC Documentum xDB Version 10.5 Manual

XQuery

let $doc := xhive:parse($doc-text, "http://www.w3.org/2005/Atom atom.xsd")
return xhive:insert-document("feed-lib/newentry.xml", $doc)

• xhive:input() as document-node()
This function returns the calling documents and is useful when there is another active context node.

• xhive:java($class as xs:string, ...) as item()*
xDB offers an XQuery extension function interface that Java developers can use create new
extension functions, which can then be called from XQuery using the xhive:java function.

Example:

xhive:java("com.mydomain.myclass", $x, doc("/mydoc")//item)

• xhive:get-nodes-by-key($library as xs:string, $indexname as xs:string, $key as xs:string)
as node()*
This function looks up the key in the index with the specified name on the specified library or
document and returns the nodes in the index. This process provides direct access to indexes.

Example:

xhive:get-nodes-by-key("/MyLibrary", "item_index", "pc34")

• xhive:full-path($document as node()) as xs:string
This function returns the string that uniquely identifies the library child in the database. If the passed
node is not a library child, the full path of the owner document is returned.

Example: If function xhive:full-path($doc) returns path ’/path/to/doc.xml’, you can access the same
document with function doc(’/path/to/doc.xml’)

• xhive:document-name($document as node()) as xs:string
This function returns the name of the document that is set by the XhiveLibraryChildIf.setName(String
name) method. If the document has a name and when the passed node is a document or has an
owner document, the name of the document is returned. Otherwise, this function returns an empty
sequence.

• xhive:document-id($document as node()) as xs:long
This function returns the id of the document. This id is generated by xDB on creation of the
document. If the passed node is a document or has an owner document, the id of the document is
returned. Otherwise an empty sequence is returned.

• xhive:force($items as item()*) as item()*
This function forces the immediate evaluation of its argument. If this function is used as the
outermost expression of a query, the query is evaluated immediately and the result is stored

EMC Documentum xDB Version 10.5 Manual 183

XQuery

internally. This function can make it possible to use the query result for modifying the searched
data, which is normally impossible due to lazy query result evaluation.

Example:

xhive:force(doc(’doc’)//elem)

• xhive:version($document as document-node()*, $version as xs:string) as document-node()*
This function returns a document sequence that represent the contents of a set of specific input
document versions. The function returns an empty sequence for nodes that are not documents, are
not versioned, or for non-existing versions. The version argument is first evaluated as a label. If no
version with that label is found, the argument is evaluated as a version ID. For example, if you have
a version 1.4 which has a 1.2 label , a query for version 1.2 returns version 1.4.

It is possible to specify a set of documents as an argument. The following query retrieves all
document version with the release2 label.

xhive:version(doc("/versioned-lib"), "release2")

• xhive:version-property($document as document-node()*, $version as xs:string, $property
as xs:string) as xs:string*
This function returns the value of a specified version attribute. This function is like the xhive:version
function, but the result consists of a sequence of strings. The property argument must be one of the
following:

– date or creation-date — The date on which the version was created, using the
yyyy-mm-ddThh:mm format.

– check-out-date—The date on which the version was checked out, using the yyyy-mm-ddThh:mm
format.

– creator— The name of the user who created the version.
– checked-out-by— The name of the user who checked out this document version.

• xhive:version-date-property($document as document-node()*, $version as xs:string,
$property as xs:string) as xs:dateTime*
This function returns the value of a specified version date attribute. This function is similar to the
xhive:version-property function, but the result consists of a sequence of xs:dateTime values instead
of xs:string values. In addition, the xs:dateTime value is adjusted to timezone while the xs:string
value is not adjusted to timezone. The property argument must be one of the following:

– date or creation-date— The date on which the version was created.
– check-out-date— The date on which the version was checked out.

• xhive:version-ids($document as node()*[, $branchversion as xs:string]) as xs:string*
This function returns the IDs of document versions. If no second argument is specified, all version
IDs of the version space are returned as a string sequence. Passing a second argument, retrieves
more detailed information:

184 EMC Documentum xDB Version 10.5 Manual

XQuery

– If the branch ID is specified, the result contains only those version IDs that are part of that branch
and the ones shared with other branches.

– If 1 is passed as the argument, the result contains a list of all branch IDs in the version space
of the document argument.

– If the version ID is specified, the result contains the version labels for that version.

For non-versioned documents, or when the branchversion argument refers to a nonexisting branch
or version, the result is the empty sequence.

The example query below gets all the different titles of all book versions created before 2003:

distinct-values(
let $doc := doc("/version-lib/book.xml")
for $version in xhive:version-ids($doc)
where xhive:version-property($doc, $version, "date") < "2003-01-01"
return xhive:version($doc, $version)/book/title

)

• xhive:version-id($document as node()) as xs:string
This function returns the version ID of a specific document instance. Only applicable for documents
marked as queryable. This is useful for retrieving versioning properties of documents returned by
xhive:collection-*-date() functions.

Example:

for $doc in xhive:collection-after-date("/", xs:dateTime("2011-01-01T01:00:00Z"))
let $version-id := xhive:version-id($doc)
where $doc//name="John"
return <result>

<name>{xhive:document-name($doc)}</name>
<version-id>{$version-id}</version-id>
<creator>{xhive:version-property($doc, $version-id, "creator")}</creator>
<date>{xhive:version-date-property($doc, $version-id, "creation-date")}</date>

</result>

• xhive:collection-between-dates($path as xs:string, $start as xs:dateTime, $end as xs:dateTime)
as node()*
xhive:collection-at-date($path as xs:string, $date as xs:dateTime) as node()*

xhive:collection-before-date($path as xs:string, $date as xs:dateTime) as node()*

xhive:collection-after-date($path as xs:string, $date as xs:dateTime) as node()*

These functions return all document versions in the supplied path that match the supplied period,
and are marked as queryable.

The example query below returns all document versions in some library that were created in the date
range from Jan 1st 2011 up to May 13th 2012:

for $doc in xhive:collection-between-dates(’/some/library’,
xs:dateTime(’2011-01-01T01:00:00Z’),xs:dateTime(’2012-05-13T10:00:00Z’))

EMC Documentum xDB Version 10.5 Manual 185

XQuery

return $doc)

Querying inside documents is also possible. The example query below returns all document versions
in the date range that contained <name>John</name> in the XML:

for $doc in xhive:collection-between-dates(’/some/library’,
xs:dateTime(’2011-01-01T01:00:00Z’),xs:dateTime(’2012-05-13T10:00:00Z’))
where $doc//name=’John’ return $doc

Note: For regular documents or versioned documents that do not have the queryable option enabled,
the function ignores the passed date parameters and always returns the current version, as the
normal fn:collection() function would.

• xhive:metadata($document as document-node()*, $key as xs:string?) as xdt:untypedAtomic*
This function retrieves the value that belongs to the $key attribute in the metadata of the $document
document. If the key is the empty sequence, the result is a sequence with the values of all metadata
fields.

Example:

xhive:metadata(doc("/mydoc"), "author")

• xhive:get-metadata-keys($document as document-node()*) as xs:string*
This function retrieves all distinct keys of given documents(s).

Example:

xhive:get-metadata-keys(doc("/mydoc"))

• xhive:highlight($arg as item()*, ...) as item()*
This function can be used for text highlighting. The xDB XQuery extension function
xhive:highlight($arg as item()*, ...) as item()* is set on the query using the
XhiveXQueryQueryIf.setHighlighter(highlighter) API.

When this function is called, the XQuery engine calls the extension function with the following
arguments:

– The first extension function argument is a sequence of strings consisting of the tokens used by any
full-text search in the current FLWOR expression.

– The second argument is a sequence of the positions of the tokens of the first argument. The
position information can be used to distinguish phrases from single terms.

– The third argument contains the phrase ID of the token. All tokens of a phrase have the same
ID. The ID is generated by a counter, the first phrase has ID = 1, the next 2 etc. The ID can be
used to identify all tokens of a certain phrase.

– The last arguments of the highlighter extension function contain the $arg arguments passed to
the xhive:highlight function.

All tokens, positions and phrase IDs have the same order, so the nth position of the positions
argument and the nth phrase ID of the Phrase IDs argument belong to the nth token of the tokens
argument.

186 EMC Documentum xDB Version 10.5 Manual

XQuery

For example, in the query

for $elem in //para
where $elem contains text "Rotterdam"
return xhive:highlight($elem)

the highlighter function is called with four arguments, token Rotterdam, position 1, phrase ID
1 and the matching para element.

In the following phrase query

for $elem in //para
where $elem contains text {"Rotterdam", "harbour"} phrase
return xhive:highlight($elem)

the highlighter function is called with four arguments, Rotterdam, harbour, positions 1, 2, phrase
ID’s 1, 1 and the matching para element.

• xhive:created-at($uri as xs:string) as xs:dateTime
Returns when the document, library, or blob at $uri was created. If $uri does not exist, an error
is raised (err:FODC0002).

• xhive:last-modified($uri as xs:string) as xs:dateTime
Returns when the document, library, or blob at $uri was modified for the last time. If $uri does
not exist, an error is raised (err:FODC0002).

• xhive:child-documents($uri as xs:string) as document-node()*
Returns direct document children of the library indicated by $uri, i.e., only documents that are
located directly underneath the library, not recursive descendants like the built-in doc function. If
$uri does not point to a library, or the library has no children, the empty sequence is returned. If
$uri does not exist, an error is raised (err:FODC0002).

Note: Because xDB indexes cover all descendant documents, queries using this function will not
be able to use any indexes on the library. In most cases, it might be better and easier to organize
your content within xDB so that you do no need this function.

• xhive:child-uris($uri as xs:string) as xs:string*
Returns the absolute URIs of direct children of the library indicated by $uri. If $uri does not point
to a library, or the library has no children, the empty sequence is returned. If $uri does not exist,
an error is raised (err:FODC0002). In contrast to xhive:child-documents, this will return the
URIs of blob nodes and/or libraries.

• xhive:glob-documents($uri as xs:string) as document-node()*
Returns all documents that match given wildcard database path $uri. The components of the path
can specify the following wildcard characters:

– * - matches zero or more characters

EMC Documentum xDB Version 10.5 Manual 187

XQuery

– ? - matches one character
Relative database paths are resolved against the absolute path of the current context item.

Examples:

xhive:glob-documents("/*")
xhive:glob-documents("doc*.xml")
xhive:glob-documents("/lib?/*/*")

Note: The xhive:glob-documents function does not use any indexes.

Using XQuery extension function xhive:force
The xDB XQuery extension function xhive:force($items as item()*) as item()* forces the immediate
evaluation of its argument. For information about the function, see its description.

Example:
String query = "xhive:force(doc(’doc’)//elem)";
XhiveXQueryResultIf result = lc.executeXQuery(query);
while (result.hasNext()) {
XhiveXQueryValueIf value = result.next();
// We know this query will only return nodes.
Node node = value.asNode();
// Remove this node
node.getParentNode().removeChild(node);

}

Using XQuery extension function xhive:highlight
The xDB XQuery extension function xhive:highlight($arg as item()*, ...) as item()* is set on the
query using the XhiveXQueryQueryIf.setHighlighter(highlighter) API. For information about the
function, see its description.

The analyzer that is used for the query processes the passed tokens. If the query strings contain
wildcards, the analyzer replaces them with the characters specified in the XhiveFtsUtilIf interface.
The XhiveFtsUtilIf.compilePattern method can be used to match query strings with wildcards against
terms in the text.

Using indexes in XQuery
xDB has several index types that can be used to speed up XQueries:

• Path indexes, page 151, Multipath Indexes, page 153, Value indexes, page 161, and Element name
indexes, page 167
These index types are used when the optimizer determines that they apply to a specific expression in
the query. Path and multipath indexes are most flexible and useful for typical queries.

• Full text indexes, page 163

188 EMC Documentum xDB Version 10.5 Manual

XQuery

Full text indexes can be used through the xhive:fts function, see Full-text queries, page 194.
• Library name indexes and library ID indexes, page 165.
If available, these are always used by the doc() XQuery function.

• ID attribute indexes, page 166
The id() XQuery function always uses document ID attribute indexes. ID attribute indexes on
libraries are never used by xqueries, except when explicitly used with the xhive:get-nodes-by-key()
extension function, page 182.

Value and name element indexes
Value indexes and element name indexes are used for path expressions that:

• Start with a call to the XQuery doc() function that specifies one of the following:

– The document or library containing the index.
– One of the document or ancestor libraries.
– A path expression that starts at a variable that has been bound to one or more libraries.
If the specified library does not contain a useful index, but one or more descendant libraries do,
the evaluator uses the index on those descendant libraries. The query in the other libraries are
evaluated by force search.
Example:

(: can use any indexes on root library or below :)
doc(’/’)//foo[@bar = 12]

(: can use indexes on "mylib" or below :)
doc(’/mylib’)//foo[@bar = 12]

(: can use indexes on "lib1" and "lib2" or below :)
(doc(’/lib1’), doc(’/lib2’))//foo[@bar = 12]

(: ditto, also works with declared and external variables :)
let $libs := (doc(’/lib1’), doc(’/lib2’))
return $libs//foo[@bar = 12]

(:
: will not use indexes on any libraries as the doc calls
: are expanded to the single documents below before the
: path expression is evaluated
:)
for $doc in (doc(’/lib1’), doc(’/lib2’))
return $doc//foo[@bar = 12]

• Contain descending steps, such as child, descendant or descendant-or-self,
including the abbreviated versions like //. For element name indexes, the first step must be
a descendant(-or-self) step.

• Contain at most one predicate per step. If there are multiple predicates in a step, they are changed to
use and. For example, replace //parent[@color = "red"][elem[@attr = "green"]] with

EMC Documentum xDB Version 10.5 Manual 189

XQuery

//parent[@color = "red" and elem[@attr = "green"]] to have the query use possible
value indexes on parent/@color and elem/@attr.

• Contain a predicate or where-clause that checks the indexed value. A value or general comparison is
used against any expression that is constant for this path expression, and whose type corresponds to
the type of the value index.

• Contain a step with an indexed element name.

Examples

The following examples use a value index with the default type "STRING" on the attr attribute of
the elem element on the root library.
(: Use index without further checks :)
doc("/")//elem[@attr = $var]

(: Ditto :)
for $x in doc("/")//elem
where $x/@attr eq func(2)
return ...

(: Use index and check parent of indexed element :)
doc("/")//parent[@color = "red"]/elem[@attr = "green"]

(: Use index and check ancestors of indexed element :)
doc("/")/parent[@color = "red"]//elem[@attr = "green"]

(: Use index and lookup children :)
doc("/")//elem[@attr eq substring($str, 1, 3)]/name

(: Use index and return parent of indexed node :)
doc("/")//parent[elem/@attr = "black"]

(: Use index and return all ancestors of
indexed nodes called "parent" :)

doc("/")//parent[descendant::elem/@attr = "black"]

With an element value index, the predicate or where-clause must check the contents of the element for
an index. The following example uses an element value index on the elem element in the root library.
(: Use the index directly :)
doc("/")//elem[. eq "red"]

(: In a flower expression :)
for $x in doc("/")//elem
where $x = "green"

(: Uses text() instead of context node :)
doc("/")//person/elem[text() = "yellow"]

(: Use the index and return the parent of the indexed node :)
doc("/")//person[elem = "black"]

(: Or equivalently :)
for $x in doc("/")//person
where $x/elem = "black"
return $x

190 EMC Documentum xDB Version 10.5 Manual

XQuery

Range queries
Range queries are queries that constrain data to a range of values, instead of to a single value. If the
optimizer finds a predicate or where-clause that uses both less or equal and greater or equal on the
same node, it can use an index to find the values in the requested range. For example:
doc(’/’)//book[@author >= "A" and @author < "B"]

If there is an index with sorted keys on book/@author element, the optimizer scans the index from A
to B to find the result of this expression.

The conditions refers to the same node, for example:
(: Cannot use range query on author index :)
doc(’/’)//book[author >= "A" and author < "B"]

The optimizer cannot use the author index in a range query. The book could have one author
satisfying the first condition and another author that satisfies the second condition. To make both
conditions refer to the same author and allow use of the index,
(: Can use range query on author index :)
doc(’/’)//book[author[. >= "A" and . < "B"]]

(: Can use path index book[author + title] :)
doc(’/’)//book[author = "Asimov" and title[. >=
"Robot" and . < "Second"]]

Indexing metadata
The following example uses the doc() function and an index that has been created on the mylib
library and the author metadata field.
doc("/mylib")[xhive:metadata(., "author") = "Jane Doe"]

The function looks up Jane Doe in the author index and returns all matching documents. The
optimizer can only use indexes for expressions where the metadata key is a string literal or the literal
empty sequence, not a generic expression.

Full text indexes would use an expression like the following:
doc("/mylib")[xhive:fts(xhive:metadata(., "p"), "XQuery")]

Multiple indexes
Different parts of a query can use different indexes. The following example uses an index on attribute
x of element x, and an index on attribute y of element y. If both indexes can be used for a single path
expression, the optimizer creates a query plan with an intersection.

Examples
for $x in doc("/")//x[@x = "x"]
for $y in doc("/")//y[@y = $x/@yref]
return ...

(: or, equivalently :)

EMC Documentum xDB Version 10.5 Manual 191

XQuery

for $x in doc("/")//x
for $y in doc("/")//y
where $x/@x = "x"
and $y/@y = $x/@yref
return ...

In the following example, the optimizer first looks up "x" in the index for x/@x and stores the result in
a temporary set. Then the optimizer looks up "y" in the index for y/@y and checks that the parents of
the indexed elements are present in the temporary set. If the parents are present, the node element is
added to the result set.
doc("/")//x[@x="x"]/y[@y="y"]

The following query returns similar results:
let $x := xhive:get-nodes-by-key("/", "x/@x", "x")
return xhive:get-nodes-by-key("/", "y/@y", "y")[parent::x intersect $x]

Metadata indexes can also be used to create similar combinations, as described in the following
example.
doc("/")[xhive:metadata(., "status") = "ready" and .//x/@x = "x"]

doc("/")[xhive:metadata(., "author") = "PP"]
//chapter[xhive:fts(title, "xDB")]

Indexes and order by
Indexes can be used to speed up queries that use an order by statement, if:

• The expressions in the order by statement match the indexed values in the correct order.
• The FLWOR expression is run on a single indexed library or document.
• The order by statement is not stable.

Examples

If there is a multi-valued path value index, the optimizer tries to use as many values from the index as
possible. In this case the order specs have to be in the same order as in the index specification.
(: with an index on foo.xml, this will use an order by index :)
for $book in doc(’foo.xml’)//book[@year]
(: have to mention child for index usage :)

order by $book/@year descending
return $book

Enable queryplan-debug if you want to verify whether an order by query is being optimized. For
example, a path value index like //book[@year<STRING> + title<STRING>] generates an
output like Found an index to support the first 2 order specs.

declare option xhive:queryplan-debug ’true’;
for $book in doc(’foo.xml’)//book[@year and title]
order by $book/@year, $book/title

192 EMC Documentum xDB Version 10.5 Manual

XQuery

return $book

If the query plan does not match the expected plan, the optimizer debug statements are enabled to
check whether the optimizer considered the desired index.
declare option xhive:optimizer-debug ’true’;
for $book in doc(’foo.xml’)//book[@year and title]
order by $book/@year, $book/title
return $book

It is also possible to optimize a subset of the order specs. For example, if an index can only support
two of three order specs, only the last order spec is evaluated, and only in the case the first two values
are equal.

Queries that use range or equality comparisons on index values in combination with an order by
statement also benefit from indexes. With the path value index from the last example, the following
query is faster.
for $book in doc(’/booklib/’)//book[@year = ’2002’ and title > ’V’]
order by $book/@year, $book/title
return $book

Proprietary XQuery extension to order by
xDB implements a proprietary extension to order by statements that makes it possible to order the
results of a query depending on user input.

The XQuery FLWOR grammar is extended as follows:
orderModifier:
("ascending" | "descending"
| <"ascending" "if" "("> ExprSingle ")")?
(<"empty" "greatest"> | <"empty" "least">)? ("collation" URILiteral)?

If the result value is true, the expression in parenthesis is evaluated to a Boolean value and the result is
ordered ascending. If the result value is false, the result is ordered descending.

This syntax can be useful for writing queries that require ordering data by many different columns,
depending on user input. Imagine ordering tabular data with 8 columns in all descending/ascending
combinations by writing 64 different queries and encapsulating them in if statements.
declare variable $asc_order1 external;
declare variable $asc_order2 external;

for $entry in //...
order by $entry/id ascending if ($asc_order1),

$entry/name ascending if ($asc_order2)
return
$entry

Together with dynamic checks for QNames (e.g. $entry/*[node-name() eq $order_col1]
instead of $entry/id) you can avoid writing duplicated query code. This functionality is proprietary
and queries using it are not compatible with other XQuery implementations. The ascending if .. syntax
prevents index supported evaluation of order by expressions.

EMC Documentum xDB Version 10.5 Manual 193

XQuery

Using type information in XQuery
xDB can store type information in two ways:

• Value indexes can have a type, page 161.
• During validation of a document, PSVI information can be stored with the nodes of the document.
The type of the node is persisted as declared in the associated XML schema.

This value index type information is used in XQuery. For example, in the query
//element[@id < /my/first/idelement]

the way the comparison between the id attribute and the idelement attribute is processed, depends
on the type-information as follows:

• If no type information is found, the comparison is performed between the string values of the two
attributes.

• The PSVI information is stored for the attributes. For example, if the /my/first/idelement item
is stored as an integer, the comparison is performed as if both attributes are integers.

• If the id attribute is stored as an integer, but /my/first/idelement is stored as an incompatible
type, the XQuery processor throws an exception.

The index type never determines the type used in the comparison. The type for the comparison is
determined first, then the matching index type is used. However, when a typed index is used it can lead
to different query results compared to a query evaluation without that index. The id attributes are
treated as integers when an integer index is used, but they are treated as text in case of an untyped index.

It can be useful to enable debugging for a query by setting the xhive:queryplan-debug option to true.
The debugging information includes which indexes are used.

It is possible to execute the sample XQuery with an integer comparison by explicitly casting the
compared value to the right type, or using one of the internal conversion functions. The sample
XQuery can be executed even if the /my/first/idelement does not have PSVI information or has
PSVI information but is of a non-integer type in the linked XML Schema, as follows:
//element[@id < xs:int(/my/first/idelement)]

or
//element[@id < (/my/first/idelement cast as xs:integer)]

XQuery full-text search
xDB partially implements the W3C XQuery Full-Text Facility Standard, with some extensions. For
information on limitations, see Full-Text search limitations, page 195.

This section provides descriptions and usage examples of:

• full-text logical operators, page 195
• wildcard options, page 195
• fuzzy option, page 196
• thesaurus option, page 196
• anyall options, page 197

194 EMC Documentum xDB Version 10.5 Manual

XQuery

• positional filters, page 197
• cardinality option, page 198
• score variables, page 198

xDB supports the full-text operator contains text. Earlier versions of the XQuery Full-Text
specification used the keyword ftcontains. This is still supported by xDB, but deprecated.

xDB also extends XQuery with a proprietary full-text search function, page 198. This is still supported
in xDB 10, but the standard syntax proposed by W3C is preferred.

Full-text search limitations
The current full text search implementation has certain limitations:

• The query parser recognizes the boost factor, but it is not possible to rank the results.
• Prefix queries are not passed through the analyzer. If an index contains only lowercase terms,
uppercase letters are not used in a prefix query.

• Using phrase queries on indexed nodes when the index does not support phrase queries generates
an unsupported operation exception.

• Phrase queries are always be surrounded by double quotes. The query parser does not recognize a
list of terms within single quotes as a phrase query.

Full-text logic operators
xDB supports the ftor, ftand, ftnot, and not in full-text logic operators. For descriptions of these
operations see http://www.w3.org/TR/xpath-full-text-10/#logical_ftoperators.

Examples of full-text search queries with logic operators
(: retrieves all books with title containing terms "programming" and "web" :)
doc(’bib.xml’)/bib/book[title contains text "programming" ftand "web"]

(: retrieves all books with title containing terms "Unix" and "TCP"
or term "programming" :)

doc(’bib.xml’)/bib/book[title contains text "Unix" ftand "TCP" ftor "programming"]

(: retrieves all books with title containing terms "Unix",
but not containing term "UDP" :)

doc(’bib.xml’)/bib/book[title contains text "Unix" ftand ftnot "UDP"]

(: retrieves all books with title containing terms "Unix"
when it is not part of "Unix environment" :)

doc(’bib.xml’)/bib/book[title contains text "Unix" not in "Unix environment"]

Queries with wildcards
xDB supports the ., .?, .*, .+, and .{n,m} wildcard qualifiers. For descriptions of full-text wildcard
options, see http://www.w3.org/TR/xpath-full-text-10/#ftwildcardoption.

Examples of full-text search queries with wildcard options
(: retrieves all books with publisher containing term starting from "Kauf" :)

EMC Documentum xDB Version 10.5 Manual 195

http://www.w3.org/TR/xpath-full-text-10/#logical_ftoperators
http://www.w3.org/TR/xpath-full-text-10/#ftwildcardoption

XQuery

doc(’bib.xml’)/bib/book[publisher contains text "Kauf.*" using wildcards]

(: retrieves all books with publisher containing term starting
from "Aca" then followed by arbitrary character and ended by "emic" :)

doc(’bib.xml’)/bib/book[publisher contains text "Aca.emic" using wildcards]

(: retrieves all books with publisher containing term "Publisher"
or terms starting from "Publisher" and ended by arbitrary character :)

doc(’bib.xml’)/bib/book[publisher contains text "Publisher.?" using wildcards]

(: retrieves all books with publisher containing term "Aca.emic" :)
doc(’bib.xml’)/bib/book[publisher contains text "Aca.emic" using no wildcards]

Queries with fuzzy search
xDB extends XQFT functionality with the xhive:fuzzy search option, which is supported as an
extension option of XQFT standard. When using the xhive:fuzzy option, you should specify a
minimum similarity number in the range [0, 1] which defines the similarity between query term and
searching term. The similarity is defined according to Levenshtein distance formula.

Example of full-text search queries with fuzzy option

(: retrieves all books with publisher containing term "Daufman" or simlar to it.
The minimum similarity value is 0.8. :)

doc(’bib.xml’)/bib/book[publisher contains text "Daufman" using
option xhive:fuzzy "similarity=0.8"]

Queries with thesaurus
xDB supports full text xqueries with thesaurus option. For a description of the XQFT thesaurus option,
see http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/#ftthesaurusoption.

To support thesaurus in xqueries, a thesaurus handler must be specified. This can be done in your
application, or in your XQuery using xquery option xhive:fts-thesaurus-class. If a thesaurus handler is
set by both, the option takes precedence.

Example of a full-text search query with thesaurus

(: retrieves all p elements which contain the term ’duty’. :)
for $p in doc(’/data/fti-books-document.xml’)//p
where $p contains text ’duty’
using thesaurus at ’http://www.emc.com/usability’ relationship ’UF’
return $p

Queries with thesaurus handler
As neither schema nor storage location of thesauri are fixed, a class implementing interface
com.xhive.query.interfaces.XhiveThesaurusHandler is required to support thesaurus in xqueries.

196 EMC Documentum xDB Version 10.5 Manual

http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/#ftthesaurusoption

XQuery

There are two ways to set the thesaurus handler:

• method setThesaurusHandler(XhiveThesaurusHandlerIf thesaurusHandler) of interface
com.xhive.query.interfaces.XhiveXQueryQueryIf

• xquery option xhive:fts-thesaurus-class
The advantage of using the API to set the thesaurus handler is the ability to initialize the class with
additional context information.

If a thesaurus handler is set by both API and xquery option, the option takes precedence.

Samples
XQueryWithThesaurus.java

MyThesaurusHandler.java

API documentation
com.xhive.query.interfaces.XhiveThesaurusHandlerIf

Anyall options
xDB supports the any, any word, all, all words, and phrase anyall options. For descriptions of anyall
options, see http://www.w3.org/TR/xpath-full-text-10/#ftwords.

Examples of full-text search queries with anyall options
(: retrieves all books with title containing phrase "TCP programming"

and term "UDP" :)
doc(’bib.xml’)/bib/book[title contains text {"TCP programming", "UDP"} all]

(: retrieves all books with title containing phrase "TCP programming" :)
doc(’bib.xml’)/bib/book[title contains text {"TCP", "programming"} phrase]

(: retrieves all books with title containing at least one of "TCP",
"programming" or "UDP" term :)

doc(’bib.xml’)/bib/book[title contains text {"TCP programming", "UDP"} any word]

Positional filters
xDB supports the ordered, window distance, and anchoring positional filters. For a description of
positional filters, see http://www.w3.org/TR/xpath-full-text-10/#ftposfilter.

Examples of full-text search queries with positional filters

(: retrieves all books with title containing both "unix" and
"programming" and the order of matched terms is the same as in the query :)

doc(’bib.xml’)/bib/book[title contains text "unix" ftand "programming" ordered]

(: retrieves all books with title containing both "unix" and
"programming" which are found within 3 words unit :)

doc(’bib.xml’)/bib/book[title contains text "unix" ftand "programming" window 3 words]

EMC Documentum xDB Version 10.5 Manual 197

./../../src/samples/manual/XQueryWithThesaurus.java
./../../src/samples/manual/MyThesaurusHandler.java
./../apidocs/com/xhive/query/interfaces/XhiveThesaurusHandlerIf.html
http://www.w3.org/TR/xpath-full-text-10/#ftwords
http://www.w3.org/TR/xpath-full-text-10/#ftposfilter

XQuery

(: retrieves all books with title containing both "unix" and "programming" and
the distance between matched terms must be at least 2 words :)

doc(’bib.xml’)/bib/book[title contains text "unix" ftand "programming"
distance at least 2 words]

(: retrieves all books with title containing both "unix" and
"programming" and the matched tokens cover start and end positions of the title :)

doc(’bib.xml’)/bib/book[title contains text "unix" ftand "programming" at start at end]

Cardinality option

xDB supports the cardinality option. For a description of cardinality option, see
http://www.w3.org/TR/2010/CR-xpath-full-text-10-20100128/#fttimes

Examples of full-text search queries with cardinality option

(: retrieves all books which have authors containing
at least 2 tokens "Serge" in the name :)

doc(’bib.xml’)/bib/book[author contains text "Serge" occurs at least 2 times]

(: retrieves all books wich have title containing
exactly 1 token "Web" in the name :)

doc(’bib.xml’)/bib/book[title contains text "Mike" occurs exactly 1 times]

Score variables

xDB supports a scoring mechanism using score variables in for and let clauses of FLWOR
expressions. Score variables are xs:double types in the [0, 1] range. A higher score
value implies a higher degree of significance. For a description of XQFT score variables,
seehttp://www.w3.org/TR/xpath-full-text-10/#section-score-variables.

Examples or full-text search queries with score variables
(: retrieves all books with title containing both "unix" and
"programming" terms and sorted by score :)

for $book score $s in doc(’bib.xml’)/bib/book[
title contains text "unix" ftand "programming"]
order by $s

return $book

(: retrieves all books with title containing "unix" and sorted by
score in descending order.
However, the scores reflect whether the book’s content contains
"programming" and "java" terms :)

for $book in doc(’bib.xml’)/bib/book[title contains text "unix"]
let score $s := $book/content contains text "programming" ftand "java"
order by $s descending

return $book

198 EMC Documentum xDB Version 10.5 Manual

http://www.w3.org/TR/xpath-full-text-10/#fttimes
http://www.w3.org/TR/xpath-full-text-10/#section-score-variables

XQuery

Score calculation
Scoring is available for both indexed and non-indexed queries. When using indexes, the quality of
the score estimation is much higher. Depending on the options that were used, xDB has access to
frequency and occurrence counts for the node set that was searched.

For optimal score estimation, full-text indexes are created with the FTI_SUPPORT_PHRASES and
FTI_SUPPORT_SCORING full-text index options, page 163.

The scoring implementation of xDB is partially based on Lucene. xDB also uses a Lucene-based
similarity class, that lets the user influence the results by changing the similarity measures using the
XQuery option xhive:fts-similarity-class.

For more information about the concepts used to estimate a query score, see the Lucene Similarity API.

The most significant difference between the xDB scoring implementation and the Lucene
implementation is that xDB does not evaluate all results. xDB estimates all scores before returning
the first result and first score. xDB estimates the expected number of results and uses the amount to
normalize and weight different query components.

Note: In the current xDB implementation it is not possible to increase the weight of a node manually,
and thus to increase the relevance of that node with respect to scoring. xDB cannot guarantee the
scoring relevance order stability.

Boost scoring models
xDB supports boosting scoring models to boost results of the full-text query coming from the library
with higher priority (e.g. freshness criteria). So, if a user performs some full-text search and gets
results ordered by score then the user can set a special callback which would define the boosting
parameters for the specific library and XQuery engine will recalculate the final score for the resulting
documents applying boosting parameters and returning results ordered by the modified scores.

xDB supports the following boosting models:

• Weighted boosting model
• Factor/shift boosting model

Weighted boosting model

The weighted model defines a new score according to the formula:

finalScore = ((origScore * (100 - freshnessWeight) + libFreshness * freshnessWeight))/100;

• origScore is the original score coming from xDB engine;
• freshnessWeight is the weight of the library freshness boost (should fit into [0,100] range);
• libFreshness is the freshness of the library (should fit into [0, 1] range).

EMC Documentum xDB Version 10.5 Manual 199

http://lucene.apache.org/core/3_6_1/api/core/org/apache/lucene/search/Similarity.html

XQuery

Factor/shift boosting model

The factor/shift model defines a new score according to the formula:

finalScore = * origScore * factor + shift;

• origScore is the original score coming from xDB engine;
• factor defines the factor value for the library;
• shift defines the shift value for the library.

Using boost scoring models

The weighted boosting model and the factor/shift boosting model can be used with xDB as boosting
scoring models for full-text XQuery results.

For weighted scoring, use XhiveWeightedFreshnessBoostIf to set the scoring callback for the query.
The code fragment below shows how to define and set the callback.

...
XhiveXQueryQueryIf query = Library.createXQuery(QUERY);
XhiveWeightedFreshnessBoostIf weightedScoresCallback =

new XhiveWeightedFreshnessBoostIf() {

@Override
public WeightedFreshnessParameters

getBoostParameters(final XhiveLibraryChildIf libraryChild) {

return new WeightedFreshnessParameters() {

@Override
public double getFreshnessWeight() {
return 40;

}

@Override
public double getLibraryChildFreshness() {
return someFreshnessFunction(libraryChild);

}
};

};

query.setLibraryWeightedFreshnessBoost(weightedScoresCallback);
...

Use XhiveScoreBoostFactorIf to set the factor/shift scoring callback for the query. The code to define
and set the shift/factor callback is analogous to the weighted model callback.

200 EMC Documentum xDB Version 10.5 Manual

XQuery

Samples

BoostLibraryScore.java

API documentation

com.xhive.query.interfaces.XhiveWeightedFreshnessBoostIf

com.xhive.core.interfaces.XhiveScoreBoostFactorIf

Using the xhive:fts full-text search function
xDB extends XQuery with a proprietary full-text search function that can be used to search for ’terms’
within a text string. It can use indexes, allows wildcards and prefixes and allows searching for exact
or sloppy phrases. The xDB full-text search implementation is partially based on code from the
Lucene project.

In xDB, the basic units for full-text indexing and searching are called ’terms’. In general, you can
think of terms as words. For example, the string ’yadda yadda yadda’ contains three terms, each with
the value ’yadda’. The analyzer determines what is regarded as a term.

The xDB full-text search function is declared as follows:
xhive:fts(node(s), querystring, options)

The first argument of the function is a node or a set of nodes. If a set of nodes is provided, the full-text
search is executed on all the nodes. The second argument is a query string. The options argument
is optional, and is a string literal containing a list of options separated by semicolon. The available
options are:

• include-attrs - if set, also search on the attribute values of searched elements (and descendants),
along with other text nodes. Note: Use of the include-attrs option in combination with full-text
index(es) requires using the FTI_INCLUDE_ATTRIBUTES option on the index(es).

• analyze-wildcards - if set, the terms in the query will be sent to the analyzer. Note: If the query
contains wildcards, the analyzer must not remove the characters used to represent wildcards.

• analyzer classname - if set, specifies the analyzer to be used on the query text.

The result is a boolean value, returning true if the text matches the query.

xDB full-text search query syntax

The syntax of xDB full-text search queries is as follows:
Query ::= Clause ([Conjunction] Clause) *

Conjunction ::= ’AND’ | ’OR’ | ’||’ | ’&&’

Clause ::= [Modifier] BasicClause [Boost]

Modifier ::= ’-’ | ’+’ | ’!’ | ’NOT’

BasicClause ::= (TermQuery | Phrase | ’(’ Query ’)’)

EMC Documentum xDB Version 10.5 Manual 201

./../../src/samples/manual/BoostLibraryScore.java
./../apidocs/com/xhive/core/interfaces/XhiveWeightedFreshnessBoostIf.html
./../apidocs/com/xhive/core/interfaces/XhiveScoreBoostFactorIf.html
http://jakarta.apache.org/lucene/docs/index.html

XQuery

TermQuery ::= (Term | WildCardTerm | PrefixQuery) [Fuzzy]

PrefixQuery ::= Term ’*’

Phrase ::= ’"’ Term * ’"’ [SlopFactor]

Fuzzy ::= ’~’

SlopFactor ::= ’~’ DecimalDigit+

Boost ::= ’^’ DecimalDigit+ ’.’ DecimalDigit+

Term ::= <a-word-or-token-to-match>

WildCardTerm ::= <a-word-or-token-to-match-with-wildcards>

The following characters are reserved: + - ! () : ^ [] " { } ~ * ?

If used without special meaning, they must be escaped with a backslash (\) .

The syntax provides for various kinds of searching, including:

• Boolean queries
• Prefix searches
• Phrase searches
• Searches with wildcards

Boolean queries

A Boolean query represents a composite query that can contain subqueries of arbitrary nesting level,
with composition rules such as and, or, not.

For each subquery of a boolean query, two binary qualifiers control how its superquery is matched:

• prohibited - if set, the sperquery is a match only when the subquery does not match. A subquery
can be marked as prohibited using modifier -, !, or NOT.

• required - if set, the superquery is a match only when the subquery does match. This condition
is necessary but not sufficient for the superquery to match. Queries can be marked as required
using modifier +.

The default implicit conjunction is OR. For example, by default, the query "apples oranges bananas" is
equal to "apples OR oranges OR bananas". The implicit conjunction can be changed locally using
the xhive:fts-implicit-conjunction option. For example, the query
//element[xhive:fts(., "apples AND oranges")]

generates the same results as the query
(# xhive:fts-implicit-conjunction ’AND’ #) {
//element[xhive:fts(., "apples oranges")]
}

There is some overlap of functionality with XQuery. For example, the query below also generates
the same results:

202 EMC Documentum xDB Version 10.5 Manual

XQuery

//element[xhive:fts(., "apples") and xhive:fts(., "oranges")]

Although there is no semantic difference between the three, in the current implementation, queries like
the first two can be significantly faster than queries like the last one.

Prefix searches

A prefix search searches for all terms starting with a certain prefix.

Phrase searches

A phrase query represents a query that is matched against a consecutive sequence of terms in the field.
A phrase query can have an optional boost factor and an optional slop parameter. The slop parameter
can be used to relax the phrase matching by accepting out of order term sequences. For example, the
phrase query ’winding road’ matches ’winding road’ but not ’road winding’, unless used with more
relaxed slop factors.

Searches with wildcards

xDB allows using the * and ? characters as wildcards in searches. The * wildcard is a substitute for an
arbitrary number of characters, the ? wildcard substitutes a single character.

Only indexes built with the option FTI_LEADING_WILDCARD_SEARCH are suitable to search
for terms with a wildcard as the first character. If this option is not set, the search can become
extremely slow.

The Analyzer

The process of breaking content in terms (words) is called tokenization. In xDB, tokenization is done
by an analyzer. An analyzer breaks up content in tokens, and can also change tokens to improve the
search capacity. For example, an analyzer can change terms to lowercase, or change a term from
plural to singular.

Both the searched text and the query are passed through the same analyzer. If an index is available, the
same analyzer used for building the index is used for analyzing the query. If no index is available, the
value of the fts-analyzer-class option determines which analyzer is used. To use a different analyzer in
the query, the analyzer class name must be included in the options argument of the xhive:fts function.

The default analyzer for the fts function:

• Analyzes the input string as a list of terms, not as a list of characters. (For example, the contains
function in XQuery considers the text as a single monolithic string.)

• Creates terms containing only letters and/or digits. Everything else triggers the start of a new term.

• Converts all characters in a term to lower case.

EMC Documentum xDB Version 10.5 Manual 203

XQuery

• Filters out the English stopwords "a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in",
"into", "is", "it", "no", "not", "of", "on", "or", "s", "such", "t", "that", "the", "their", "then", "there",
"these", "they", "this", "to", "was", "will", "with".

XQuery performance tuning
The following actions can improve XQuery performance:

• If a path expression uses an index, use as few explicit steps as possible because all steps must be
checked to verify whether they match. For example: (: Preferred with index :)
doc("/")//elem[@attr = "green"]

• If a path expression does not use an index, but must be searched by scanning the document, use as
many explicit steps and predicates as possible. That way, branches of the DOM tree can be skipped
as soon as possible. For example:(: Preferred without index :)
doc("/")/docelem/persons/person/name/elem[@attr = "green"]

• Some predicate expressions are optimized to stop searching as soon as the required number of items
are found. If the predicate is an integer expression that does not depend on the context node, context
position or context size evaluation stops as soon as possible. The same applies if the predicate
requires the position() function to be less than or equal to such an expression. For example:

(: Stops searching after the second foo element :)
let $x := doc("/mydoc")//foo
return $x[position() le 2]

(: Also stops searching after the second foo element :)
let $x := doc("/mydoc")//foo
return $x[2]

Sometimes a query can be modified to use such a predicate. For example:

(: Tests predicate for all foo elements :)
(doc("/mydoc")/descendant::foo)[position() = 2 to 4]

(: Stops after the fourth foo element :)
(doc("/mydoc")/descendant::foo)[position() le 4][position() ge 2]

It is also possible to use the subsequence() function to make sure that the search does not
continue after the requested number of items.

(: Stops searching after the fourth foo element :)
let $x := doc("/mydoc")//foo
return subsequence($x, 2, 3)

• Use the let command to move expensive computations out of loops. For example:

(: Before (searches document b for each occurrence of element a) :)
doc("/a")//a[@id = doc("/b")//b[@id = "10"]/@ref_a_id]

(: After (searches document b at most once) :)
let $ref_a_id := doc("/b")//b[@id = "10"]/@ref_a_id
return doc("/a")//a[@id = $ref_a_id]

204 EMC Documentum xDB Version 10.5 Manual

XQuery

• If something occurs only once, a predicate [1] allows the evaluator to stop searching after the first
occurrence. For example:

(: Even better if you know each id is only used once,
will stop searching after 1st occurrence found. :)

let $ref_a_id := (doc("/b")//b[@id = "10"])[1]/@ref_a_id
return (doc("/a")//a[@id eq $ref_a_id])[1]

(: Do not confuse the previous query with this one.
This query is probably not what the user intended. :)

let $ref_a_id := doc("/b")//b[@id = "10"][1]/@ref_a_id
return doc("/a")//a[@id eq $ref_a_id][1]

• Use the unordered function where possible. If the order of the result is not important, using
unordered can speed up the query by allowing the evaluator to skip sorting of the result in
document order. For example:

(: Assuming the query uses an index, this needs to
sort the values looked up in the index. :)

doc("/")//elem[@attr = ’value’]

(: This version needs no sorting step. :)
unordered(doc("/")//elem[@attr = ’value’])

• Recursive functions are tail recursive. xDB implements the tail call modulo cons recursion
generalization. Tail recursion saves stack space by allowing recursive functions calls that return the
result of the call directly to be evaluated iteratively, without any recursion. Tail recursion does only
work if the tail call is the last item in an evaluation branch of the function, except for other tail calls.
Tail recursion also works for mutually tail-callable functions. For example:

(: This function is tail recursive because the recursive call is
: the last thing on the ’else’ evaluation branch
:)
declare function local:x($arg)
{
if ($arg eq 3) then ’foo’
else (’a’, local:x($arg - 1))

};
(:
: This function is not tail recursive because the result of the
: recursive call is used in the ’or’ statement and thereby needed
: for evaluation of the method body.
:)
declare function local:x($arg)
{
exists($arg/@attr) or local:x($arg/child::*)

};

Many functions can be modified to be tail recursive. For example:

(: Not tail recursive because the result is used in the ’+’ operation :)
declare function local:sum($x as xs:integer) as xs:integer
{
if ($x eq) then 0
else $x + local:sum($x - 1)

};

EMC Documentum xDB Version 10.5 Manual 205

XQuery

(: Re-written to use an accumulator, call with $acc = 0 to start :)
declare function local:sum($x as xs:integer, $acc as xs:integer)

as xs:integer
{
if ($x eq) then $acc
else local:sum($x - 1, $x + $acc)

};

Tail recursion does not necessarily improve performance, but it allows recursive functions that
would otherwise result in stack overflows. Because of the evaluation strategy, the results of tail
calls cannot be type checked and the parameters to tail calls are not evaluated lazily but directly.
The result of the method is still type checked.
To verify if a function is tail recursive, enable the queryplan-debug option: declare option
xhive:queryplan-debug ’stdout’; . The maximum tail recursion depth can be set using the
xhive:max-tail-recursion-depth option, as described in XQuery options, page 179.

XQuery collation support
In xDB, a collation consists of a locale and an optional strength, separated by a slash. xDB’s collation
support relies on Java’s built in support for locales and uses collators from IBM’s ICU package
(included in the distribution). The class java.util.Locale specifies which locales are supported. A
list can be created using a code fragment as in the following example.
java.util.Locale[] locales = java.util.Locale.getAvailableLocales();
for (int i = 0; i < locales.length; ++i) {
System.out.println(locales[i].toString());

}

The strength argument is a number from 1 to 4, corresponding to the collator strengths PRIMARY,
SECONDARY, TERTIARY, and IDENTICAL. If the strength is unspecified, the default strength of the
java.text.Collator instance is used, as shown in the following example.
compare($string1, $string2, xs:anyURI("en")),
starts-with($string, "abc", xs:anyURI("nl_NL")),
ends-with($string, "xyz", xs:anyURI("no/1")),
substring-after($string1, $string2, xs:anyURI("fr_CA/2"))

If no collation is specified, the implementation uses the normal Java String class methods for
comparison, effectively comparing UTF-16 code units. Functions such as substring and
string-length always count Unicode code points, which does not necessarily produce the same
result as counting Java characters.

XQuery Profiler
To help you find out why a query runs slow, how long parts of an XQuery take to execute, or how
much data is read, you can create a profile of an XQuery execution.

The Admin Client provides a simple graphical user interface for profiling XQueries, page 243.

Profiling produces an XML document containing the original query text and a tree of XML nodes that
represent the functions, modules, variables and expressions of the XQuery.

206 EMC Documentum xDB Version 10.5 Manual

XQuery

When an XQuery is executed with the xhive:profile option enabled (either as an XQuery option,
or by your application), after at least partial execution the XQuery will contain profiling information.

XQuery profiling methods
xDB provides a static XML representation of an XQuery through the query plan API methods:

• XhivePreparedQueryIf.getQueryPlan(DOMImplementation)
• XhiveXQueryQueryIf.getQueryPlan()
• XhiveXQueryResultIf.getQueryPlan()
These methods return an XML document containing the original query text and a tree of XML nodes
that represent the functions, modules, variables and expressions of the XQuery.

With the xhive:profile option enabled (as an XQuery option, or through the XQuery compiler API),
after at least partial execution, calling XhiveXQueryResultIf.next()) will return profiling information.

The pagesRead attribute will only be accurate if the query is run in a "new" session immediately
after a call to begin().

XQuery implementation
The xDB XQuery implementation is based on the XQuery 3.0 W3C Candidate Recommendation (08
January 2013) specification. xDB implements the Full Axis Feature and provides the ancestor,
ancestor-or-self, following, following-sibling, preceding, and preceding-sibling axes.

XQuery 3.0 optional features

Supported optional features:

• Full Axis Feature
• Schema Aware Feature
• Module Feature
• Higher-Order Function Feature

Unsupported optional features:

• Static Typing Feature
• Serialization Feature

EMC Documentum xDB Version 10.5 Manual 207

http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/

XQuery

Unsupported XQuery 3.0 features and functions

Unsupported features:

• Forwards references to global variables
• Allow modules to reference each other without restriction
• Union of lists
• Namespace nodes

Unsupported functions:

• fn:format-date
• fn:format-time
• fn:format-dateTime
• fn:format-integer
• Serialization option ’html’ in combination with fn:serialize
• Context dependent functions fn:position(), fn:size() and fn:last() outside of a predicate

As in XPath 1.0, a path step does not set the context size and position, only predicates do so. A
work-around is to use a for iterator with a positional variable and the count() function.

The following xhive functions cannot be used as named function references:

• xhive:fts
• xhive:java
• xhive:metadata
• All functions of the proprietary XQuery Update Syntax

XQuery full-text query support

xDB partially implements the W3C XQuery Full-Text Facility Standard available at
http://www.w3.org/TR/xpath-full-text-10/. For more information, refer to the section on XQuery full
text search, page 194.

Collation support

Several XQuery functions take a collation argument. The possible values of this argument are
implementation defined, according to the XQuery specification. In xDB, a collation consists of a locale

208 EMC Documentum xDB Version 10.5 Manual

http://www.w3.org/TR/xpath-full-text-10/

XQuery

and an optional strength, separated by a slash. xDB’s collation support relies on Java’s built in support
for locales and uses collators from IBM’s ICU package (included in the xDB distribution).

XQuery Security Features
xDB’s XQuery implementation has several features that are security sensitive, including:

• access to files in arbitrary locations through the doc() and collection() functions
• updating XML content (only in read/write transactions)
• execution of imported XQuery code through module imports
• importing XML schema files
• execution of arbitrary Java code and Java module imports

Applications can control these by implementing a security policy.

XQuery security methods
Applications can control which xQuery security features are enabled in an XQuery by implementing
the Java interface XhiveXQueryPolicyIf (or better, subclassing DefaultXhiveXQueryPolicy) and
registering it using XhiveXQueryCompilerIf.setSecurityPolicy(XhiveXQueryPolicyIf). This allows
fine-grained control over each feature, including which particular Java classes or URLs may be
accessed.

Like SQL, XQuery is vulnerable to injection attacks when user input is inserted by string concatenation.
To avoid XQuery injection attacks, always use external variables, page 175.

Samples

XQueryCompiler.java

API documentation

com.xhive.query.interfaces.XhiveXQueryPolicyIf

com.xhive.query.interfaces.DefaultXhiveXQueryPolicy

XQuery modules
xDB implements theModule Import Feature for creating library functions. Modules can be imported
using the following syntax:
import module namespace prefix = ’http://some/namespace/uri’ at ’location’;
(: ... use functions from the module ... :)

XQuery modules have the following characteristics:

• The XQuery module location depends on the implementation definition. In xDB, the location part
can be any valid Java URI, for example file://... or http://..., as well as a URI within the database.
Using xhive:// or a relative or absolute path without a protocol identifier follows the same syntax

EMC Documentum xDB Version 10.5 Manual 209

./../../src/samples/manual/XQuerySecurity.java
./../apidocs/com/xhive/query/interfaces/XhiveXQueryPolicyIf.html
./../apidocs/com/xhive/query/interfaces/DefaultXhiveXQueryPolicy.html

XQuery

as the doc() function. Import paths are evaluated relative to the XhiveNodeIf interface or the library
in which the query is executed or created.

• Importing a module into a current query makes available all functions and variables that have
been declared within the module namespace.

• Modules can import other modules.

If a module imports another module, functions and variables in the imported module are only
available in the importing module, and are not propagated.

• All variables and functions of a module must have the module namespace. To hide variables and
functions from other modules, use XQuery 3.0 %private annotations.

• XQuery modules can be stored as BLOB nodes or XML documents. BLOB nodes must contain
the module in flat UTF-8 text, XML documents can have any encoding as long as it is correctly
specified during the import. In XML documents, the string value of the document root element is
used as the query. The query is the concatenation of all text nodes below that root node.

• XQuery modules that are stored outside of xDB are always expected to use UTF-8 encoding.

• xDB supports multiple locations per module URI. However, xDB does not support XQuery 3.0
features like forward references to global variables and allowing modules to reference each other
without restriction. As a result, the order of the locations is of importance. For instance, the
module content of the second location can reference items declared in the module content of the
first location, but the module content of the first location cannot reference items declared in the
module content of the second location.

Examples

The following example ignores the name of the <queryModule> root element.
<queryModule><![CDATA[module namespace mns = ’http://some/namespace/uri’;

declare variable $mns:pi := 3.14159265;
declare function mns:circle-area($r as xs:double) as
xs:double { $r * $r * $mns:pi };]]>

</queryModule>

Use a CDATA block for the contents of the module. Otherwise embedded direct element constructors
are interpreted as XML syntax, as described in the following code example:
<queryModule>
module namespace foo = ’bar’;
declare variable $foo:element := <element>"Hello World!"</element>;

</queryModule>

The $foo:element variable contains the string "Hello World!", because <element/> was not escaped.

XQuery XML Schema support

xDB supports XML Schema within XQuery as follows:

• XML documents that have been parsed with schema validation and the xhive-psvi option
enabled, expose the appropriate types in XQuery. When XQuery accesses the typed value of a node,
for example by using the data() function, the resulting values are typed values. Typed values are
xs:integer values, instead of xs:untypedAtomic values.

210 EMC Documentum xDB Version 10.5 Manual

XQuery

• Schemas can be imported using the import schema construct. The processor searches the catalog
of the initial context item for a matching schema. The processor first uses any location hints, and
then falls back to the namespace URI. DTDs are not supported.
A schema can be imported into queries and used to validate documents or XML fragments. Types
declared in a schema can be used in XQuery type annotations.

XQuery Update Syntax
xDB implements the W3C XQuery Update Facility standard
(http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/).

XQuery updates are evaluated using snapshot semantics: the query is evaluated completely before the
updates are applied, so that update effects are not visible from within the query. This makes updates
less error-prone, and it allows lazy evaluation and out of order execution.

To ensure that all updates have been generated and applied after execution, an XQuery using the update
syntax is not evaluated lazily but at once. The results are cached. This caching can lead to increased
memory usage if a query executes updates and returns numerous values.

For some operations on documents and libraries, xDB supports a proprietary update syntax, page 211.

Proprietary XQuery Update Syntax
Some operations on documents and libraries are possible only with xDB’s proprietary update syntax.
For all other operations, the official XQuery Update Syntax should be used. The following xDB
update syntax functions are available:

• xhive:create-library($uri as xs:string) as empty-sequence()
This function creates a library with the specified $uri location. Any non-existent parent libraries
in the path will be created as well.

• xhive:insert-into($where as node(), $what as item()*) as empty-sequence()
xhive:insert-into-as-first($where as node(), $what as item()*) as empty-sequence()

xhive:insert-into-as-last($where as node(), $what as item()*) as empty-sequence()

xhive:insert-before($where as node(), $what as item()*) as empty-sequence()

xhive:insert-after($where as node(), $what as item()*) as empty-sequence()

These functions insert the $what items relative to $where items. The insert-into and
insert-into-as-last behave identically. Atomic values within the $what are converted into text nodes
like they are in element constructors. If $where is empty or not a node, an error is raised.

• xhive:insert-document($uri as xs:string, $document as document-node()) as empty-sequence()
This function inserts the specified $document at the $uri location. If a document already exsits
there, an error is raised.

• xhive:remove($nodes as node()*) as empty-sequence()
xhive:delete($nodes as node()*) as empty-sequence()

EMC Documentum xDB Version 10.5 Manual 211

http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/

XQuery

These functions remove the specified $nodes from their parents.

• xhive:remove-library($uri as xs:string) as empty-sequence()
This function removes the library at $uri location, including all its children.

• xhive:rename-to($what as node(), $newName as xs:QName) as empty-sequence()
This function renames the specified node to the $newName value. This function raises an error if
the target is not an attribute node, an element node, a processing instruction, or a document node.
Processing instructions can only be renamed to unqualified local names, such as QNames without
a namespace URI. To construct a QName, use the standard fn:QName($uri as xs:string?, $qname
as xs:string) as xs:QName function.

• xhive:replace-value-of($where as node(), $newContents as item()*) as empty-sequence()
This function removes all children of $where and replaces them $newContents. This function is
similar to the xhive:delete($where/node()),xhive:insert-into($where, $newContents).

• xhive:move($target as node(), $sources as node()*) as empty-sequence()
xhive:move($target as node(), $anchor as node()?, $sources as node()*) as empty-sequence()

These functions directly move DOM nodes into a new target. By default, they insert $sources as last
into $target. If $anchor is specified and not empty, the $sources are inserted before $anchor.

Moving has a potential performance advantage over removing/inserting nodes: if the $where and
$newContents values belong to the same document, nodes need not be copied or imported.

Nodes covered by indexes with UNIQUE_KEYS flags can be moved. If any of the $node child
nodes use a unique index, moving elements with a delete node $node and an insert
node $node into $target statement generates a DUPLICATE_KEY exception. Using
xhive:move($target, $node) instead works.

Example
for $book in doc(’bib.xml’)/bib/book

where $book/@year < 1990
return
xhive:remove($book)

for $book in doc(’bib.xml’)/bib/book,
$review in doc(’http://example.com/reviews.xml’)//review
where $review/@isbn = $book/@isbn
return
xhive:insert-into($book, $review)

xhive:insert-doc(’/lib/newfile.xml’,
document {
<root>
...

</root>
}

)

212 EMC Documentum xDB Version 10.5 Manual

XQuery

Data model differences

The xDB data model, which is the Document Object Model with extensions such as libraries, does
not fit the XQuery/XPath data model perfectly. xDB follows the Document Object Model (DOM)
Level 3 XPath Specification as follows:

• Entity reference nodes are treated as if they had been expanded. Queries never return entity reference
nodes. Children of an entity reference node are treated as siblings of the entity reference node.

• Adjacent text and CDATA section DOM nodes are treated as single XQuery text nodes. The string
value of the XQuery text node is the concatenation of the contents of the adjacent DOM text and
CDATA section nodes. A query such as //text() returns only the first of each set of adjacent DOM
nodes.

• BLOB nodes and library nodes do not have a representation in XQuery/XPath and are invisible to
queries. However, selecting a library using the doc() function returns all elements in the library.

Additional XQuery namespace declarations

xDB provides several bound namespace prefixes by default. These namespaces can be overridden in
the query prologue. In addition to the xml, xs, xsd, xsi, and local namespaces specified in the XQuery
working draft, the following two prefixes have been predefined:

• fn is bound to the http://www.w3.org/2003/05/xpath-functions XQuery functions namespace.
This namespace is also the default function namespace and allows using standard XQuery functions
without prefix.

• xhive is bound to the http://www.x-hive.com/2001/08/xquery-functions xDB extension functions
namespace.

EMC Documentum xDB Version 10.5 Manual 213

http://www.w3.org/TR/DOM-Level-3-XPath/
http://www.w3.org/TR/DOM-Level-3-XPath/

Chapter 11

More methods for XQuery

This chapter contains the following topics:

• Use of type information in XQuery
• Parallel queries
• Using the XQuery Resolver
• Preparing XQueries
• Extending XQuery using Java

Use of type information in XQuery
Applications can use typed information from indexes and PSVI in XQuery.

Samples

TypedIndex.java

Parallel queries
A particular subset of queries can be evaluated in parallel. For parallel evaluation, an executor instance
must be provided using code like the following:
XhiveXQueryQueryIf query = ... ;
Executor executor = Executors.newCachedThreadPool();
query.setParallelExecutor(new AbstractXhiveXQueryExecutor() {

@Override
public Executor getExecutor() {
return executor;

}

}, XhiveXQueryQueryIf.XHIVE_PATH_EXPR);
XhiveXQueryResultIf result = query.execute();
while (result.hasNext()) {

result.next();
}
result.close()

Parallel evaluation can improve performance: it can reduce the response time of queries, but there
is some overhead involved that can reduce the total throughput.

EMC Documentum xDB Version 10.5 Manual 215

./../../src/samples/manual/TypedIndex.java

More methods for XQuery

There are two types of query parts that can be parallelized:

• Path expressions
• fn:for-each

If the xhive:queryplan-debug option has been turned on for the query, the output contains a message if
the query is being parallelized.

Note: You have to call the close() method on the query result when the result items are no longer
needed. This method terminates all background threads executing jobs in parallel mode.

The parallel executor must be a custom class implementing XhiveXQueryExecutorIf. The class
AbstractXhiveXQueryExecutor provides an abstract implementation of the XhiveXQueryExecutorIf
interface. Extend this class, rather than implementing the interface XhiveXQueryExecutorIf, so your
code does not break if methods are added to the interface in future.

Interface XhiveXQueryParallelJobIf can be used to access sub-query information from within
ThreadPoolExecutor hook functions beforeExecute and afterExecute.

Parallel Path Expression queries

If an FLWOR or path expression is evaluated on a library and no relevant indexes can be found, the
query evaluation descends to the child libraries. The expression on each child library is evaluated
separately. This step can be parallelized. The database creates jobs for the expression evaluation on
each child library and submits them to the executor supplied by the user. Parallel query evaluation
is most useful in cases where the searched child libraries are located on different disks, so the I/O
load can be spread.

Generally, the expressions that can be parallelized are those that can use indexes, regardless of whether
indexes are present or used. For examples of the kind of expressions that can be optimized, see Value
and element name indexes, page 189.

Parallel fn:for-each queries

The XQuery 3.0 function fn:for-each($seq as item()*, $f as function(item()) as item()*) as item()*
applies the function item $f to every item from the sequence $seq returning the concatenation of the
resulting sequences in order. When parallelizing this function, a configurable number of items of
$seq is passed to function $f in it’s own thread.

Limitations

Parallel execution is more complex than non-parallel execution. If parallel execution does not improve
performance it is recommended to run queries non-parallel. The following xquery constructs cannot
be handled by parallel xquery parts:

• Variable declarations of function items.
• Variable declarations of other modules.

216 EMC Documentum xDB Version 10.5 Manual

More methods for XQuery

• Temporary nodes. Constructed elements and attributes are temporary nodes.
• Function items with fixed position arguments.

Samples

ParallelPathExpressionQuery.java

ParallelForEachQuery.java

Using the XQuery Resolver
xDB’s XQuery engine offers applications fine-grained control over the document resolution process
through an XQuery resolver. The XQueryResolverIf interface allows applications to control:

• Document resolving triggered by doc() and collection()
• Resolution of module imports
• Resolution of schema imports

The class AbstractXQueryResolver provides an abstract implementation of the XQuery resolver
interface. Extend this class, rather than implementing the interface XQueryResolverIf, so your code
does not break if methods are added to the resolver interface in future.

Register the implementation with XhiveXQueryCompilerIf.setResolver(XQueryResolverIf) or
XhivePreparedQueryIf.setResolver(XQueryResolverIf). In the latter case, module and schema
imports are resolved using the default mechanism, because they happen during the construction of a
prepared query and the resolver is only invoked for documents.

Samples

XQueryResolver.java

XQueryCompiler.java

API documentation

com.xhive.query.interfaces.AbstractXQueryResolver

com.xhive.query.interfaces.XQueryResolverIf

com.xhive.query.interfaces.XQueryCompilerIf

com.xhive.query.interfaces.XhivePreparedQueryIf

Preparing XQueries
The XQuery Compiler in the XhiveXQueryCompilerIf interface allows creating prepared queries.
XQueries can be parsed once and used many times. The XQuery compiler also sets common options
for all XQueries, such as available namespaces, options, commonly used functions, or modules. Using
the same namespace prefixes or options for several queries reduces the amount of XQuery code.

EMC Documentum xDB Version 10.5 Manual 217

./../../src/samples/manual/ParallelPathExpressionQuery.java
./../../src/samples/manual/ParallelForEachQuery.java
./../../src/samples/manual/XQueryResolver.java
./../../src/samples/manual/XQueryCompiler.java
./../apidocs/com/xhive/query/interfaces/AbstractXQueryResolver.html
./../apidocs/com/xhive/query/interfaces/XQueryResolverIf.html
./../apidocs/com/xhive/query/interfaces/XQueryCompilerResolverIf.html
./../apidocs/com/xhive/query/interfaces/XhivePreparedQueryIf.html

More methods for XQuery

The XhivePreparedQueryIf interface represents prepared XQueries. Prepared queries are thread safe
and can be used in parallel, either by first creating an XhiveXQueryQueryIf object or by executing
them directly.

For more information, see the XQueryCompiler.java sample code. The code prepares a query using
an XQuery compiler, with an additional namespace prefix set, and runs the same XQuery using
multiple threads.

Samples

XQueryCompiler.java

Extending XQuery using Java
xDB provides three extension mechanisms to integrate custom Java code with the
XQuery engine. Extension functions can be declared in XQuery and assigned using the
XhiveXQueryQueryIf.setFunction(...) function.

XQuery code can directly specify Java modules, for example
import module namespace math = "java:java.lang.Math";
math:sqrt(4), $math:E

All public methods and public static fields from the class are made available to the query. They are
accessible using plain Java names and a translated version where all characters are lowercase and
camel case is transformed into a hyphenated version. The hyphen is inserted between lowercase
and uppercase characters, for example getFoo() is changed to get-foo() in XQuery, and localURI is
changed to local-uri.

Java objects and instance methods
Parameters with an unrecognized type are returned as Java objects to XQuery. These objects can be
passed to other Java functions, but all XQuery expressions fail.

In XQuery, Java values are used to call instance methods, as opposed to static methods. If a method is
non-static, the instance it calls is passed as an additional first parameter.

Examples
/* Java code */
public int foo(String bar) { ... }

(: XQuery code :)
import module namespace eg = ’java:mypackage.Eg’;
let $x := eg:new()
return eg:foo($x, ’param1’)

Instances can be created using a constructor with the eg:new(...) syntax or injected from the
outside as an external parameter.
import module namespace eg = ’java:mypackage.Eg’;
declare variable $x external;
eg:foo($x, ’param1’);

218 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/XQueryCompiler.java

More methods for XQuery

Type checking

XQuery parameters are checked for the correct type and promoted to Java objects according the table.
public static String foo(String bar, int baz, Iterator<XhiveNodeIf> nodes) { ... }
(: legal call :)
eg:foo("bar", 5, <element/>)
(: wrong type :)
eg:foo("bar", "baz", ())

The return value of the function is transformed to XQuery values exactly as in the xhive:java() method.
It is possible to return Iterators, Collections, Arrays, and Sets.

Limitations

Two Java methods with different type parameter types can have the same name. In XQuery, functions
with the same name are only allowed if they have a different number of parameters. In xDB, the query
parser analyzes the input types from the query and tries to select the correct Java method accordingly.
The parser calculates a score for each method based on how good the XQuery parameter types match
the Java parameters. An error is reported if the more than one method has the best score. To direct the
parser on which method to use, users can add treat as or cast as statements to the call, for example:
eg:foo(/some/path treat as element(*, xs:integer))

EMC Documentum xDB Version 10.5 Manual 219

Chapter 12

Catalogs and Validation

This chapter contains the following topics:

• xDB catalogs
• Adding models to a catalog
• Linking models to documents
• Validated parsing
• Catalog methods
• Validating documents against models
• Post Validation Schema Infoset (PSVI)
• Accessing PSVI information

xDB catalogs
xDB libraries store XML documents, sublibraries, and BLOBs. XML documents can be associated
with a document type definition (DTD) or XML Schema to validate the document. DTDs and XML
schemas are also referred to as models.

A catalog is linked to a library. By default, only the root library has a catalog where all models are
stored. However, it is also possible to place a catalog in a sublibrary and split models over multiple
catalogs. Catalogs in sublibraries are called local catalogs. Local catalogs override information
in the root catalog and during queries the local catalog is searched first. If a root catalog and a
local catalog contain a model with the same identifier, the model in the local catalog is used for all
documents and descendants.

Identifying XML schemas and DTD models

Each model in a catalog has a unique indentifier that depends on the schema type of the model:

• DTD models are identified by their public ID. If the DTD does not contain a public ID, xDB
automatically generates an ID.

• XML schema models are identified by their filename.

EMC Documentum xDB Version 10.5 Manual 221

Catalogs and Validation

Adding models to a catalog
DTDs and XML schemas are stored as ASModel objects. The ASModel interface is part of the DOM
Abstract Schema specification and provides several interfaces for accessing model information, guided
document editing, parsing and serialization.

Documents that are associated with a DTD can have internal subsets and contain a document type
declaration along with DTD declarations. When the document parsed with validation that internal
subset is stored and available as an ASModel. The internal subset is not stored in the catalog and is
only available on the document itself.

A document with a DTD can only have one external ASModel object. A document with an XML
schema can have multiple ASModel objects since each schema document uses a separate ASModel.

A catalog can have a default DTD that is used during parsing. It is not possible to set a default XML
Schema for a catalog.

Models can be added to a catalog in two ways:

• By parsing and validating a document. During validated parsing, the model linked to the document
is automatically stored in the catalog.

• By parsing a model.

Linking models to documents
When accessing the schema information of a document, xDB automatically tries to locate the correct
model in the library catalog where the document is stored.

Linking DTDs

Generally, a document that contains a <!DOCTYPE> declaration is linked to a DTD. The
<!DOCTYPE> declaration specifies a public ID and a system ID, like the following:
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "svg10.dtd">
Where -//W3C//DTD SVG 1.0//EN is the public ID and svg10.dtd is the system ID.

When retrieving the active ASModel of a document, the system looks up the ASModel Id in all
catalogs up to the root library. The active ASModel is set using an abstract schema. If a document does
not contain a <!DOCTYPE> declaration, the system automatically adds a <!DOCTYPE> declaration
with the ASModel Id, linking the document to the ASModel. The model can be replaced by adding a
new model to the catalog and changing the Id to the new model.

Linking to XML schemas

A document can be linked to an XML schema in two ways:

• Using the schema location attribute in the document element, like the following:

<personnel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’personal.xsd’>

222 EMC Documentum xDB Version 10.5 Manual

Catalogs and Validation

• Using the schema-location parameter in the document configuration to normalize the XML
document.

A document with XML schema can have more than one active model attached.

After document validation or validated parsing, the string concatenation of the ASModel IDs is stored
in the xhive-schema-ids parameter of the document. The IDs are used to identify the ASModels
for validation or access to the PSVI interfaces.

Validated parsing
If a document is parsed with validation and the models are not found, the models are automatically
stored in the catalog. If a document is parsed without validation, the models are not stored in the
catalog. xDB includes DOM configuration options that allow validation without storing the model, or
storing the model and internal subsets without validating the document.

ASModel resolutions are handled separately for DTD and XML schema models.

DTDs

When a document contains a <!DOCTYPE> declaration and the document is parsed with validation,
xDB attempts to locate the DTD, as follows:

• If the <!DOCTYPE> declaration specifies a public ID, the public ID is used to identify the ASModel.

• If the <!DOCTYPE> declaration does not specify a public ID or a DTD matching the public ID
does not exist, the system uses the default DTD.

• If no default DTD is specified, the system ID specified in the <!DOCTYPE> declaration is used
to locate a DTD in the file system.

The DTD is stored in the closest local catalog, either under the specified public ID or a public ID
generated by xDB.
Note: If the <!DOCTYPE> declaration does not specify a public ID, xDB stores a DTD for each
document that is parsed with validation, even if they point to a DTD with the same system ID.
Loading the DTD in advance and using the resulting ASModel as the default prevents storing a DTD
for each document.-

XML schema

When parsing with validation, XML schema models are identified, as follows:

• If the document is parsed using the LSParser interface and a schema-location parameter is
specified in the LSParser configurations settings, xDB validates against the defined ASModel. The
schema-location parameter is added to the document.

• If the name space declaration of the document contains a noNamespaceSchemaLocation or
schemaLocation XML schema instance attribute, xDB uses the corresponding ASModel for
validation.

Note: If two models have the same target namespace, using the schema-location configuration
parameter to define a model overrides using the schema location attributes.

EMC Documentum xDB Version 10.5 Manual 223

Catalogs and Validation

Catalog methods
A catalog is a special library for storing schema documents, which are represented by ASModels from
the W3C abstract schema specification. By default, only the root-library has a catalog, but you can set
a local catalog by calling addLocalCatalog() on a library. When that is done, catalog operations on
that library or its descendants will first call on this library.

A document with XML schema can have more than one active model attached.

Linked models can be changed by setting the schema-location parameter in the document configuration
settings or by using the setActiveASModel and addAS abstract schema functions. These functions also
modify the schema-location parameter value.

API documentation

com.xhive.dom.interfaces.XhiveLibraryIf

com.xhive.dom.interfaces.XhiveCatalogIf

org.w3c.dom.as.ASModel

Validating documents against models
A document stored in xDB can be validated against its model. Documents using an XML schema are
validated differently than documents using a DTD.

DTDs

The DTD validation process uses the ASModel defined by the public ID of the document. Validation
fails if a DTD with that public does not exist in the catalog. The ASModel, page 126 interfaces contain
the methods for validating documents that use a DTD.

XML schema

The configuration settings of the document determine the XML schema validation process, as
described in Normalizing XML documents, page 102. The validation process attempts to locate the
ASModels associated with the document, then validates the document against the model. The location
of the model is specified either in the schema-location parameter in the configuration settings, or in the
noNamespaceSchemaLocation or schemaLocation attribute of the document.

If two models have the same target namespace, using the schema-location configuration parameter
to define a model overrides using the schema location attributes.

Post Validation Schema Infoset (PSVI)
xDB supports the Xerces XML Schema API that provides access to the Post Schema Validation Infoset
(PSVI) and XML schema model information. This API has not been submitted to W3C, yet. The
interfaces can change in the future.

224 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html
./../apidocs/com/xhive/dom/interfaces/XhiveCatalogIf.html
./../apidocs/org/w3c/dom/as/ASModel.html

Catalogs and Validation

The XML Schema API can be used to traverse XML schema components like type definitions,
element declarations, and schema constraints. PSVI information, such as validity, validation context,
normalized value, type definition, and member type definition can be accessed for individual nodes.

Nodes storing state information need more disk space. Users can set a configuration option to enable
PSVI information storage. If this option is not set, queries do not support data types and the XML
Schema API is only partially accessible. For example, node validity information is not available.

When using the XML Schema API to access schema information, the xhive-schema-ids attribute
value identifies the corresponding ASModels. This value specifies the schema IDs corresponding to
information stored by the configuration schema-location parameter and schema-location attributes.
If possible, the xhive-schema-ids value excludes the schema locations of the attributes that the
schema-location value overrules.

Related topics

XML Schema data types

XML Schema model information

Xerces XML Schema API

Accessing PSVI information

DOM configuration

Accessing PSVI information
Schema and validation information of attributes and elements can be accessed using the Xerces XML
Schema API interfaces. To access the PSVI information of an element, the element must be cast to an
ElementPSVI object. The following code example describes how to retrieve the validity of a node:
Element email = (Element) document.getElementsByTagNameNS(null, "email").item(0);
ElementPSVI elemPsvi = (ElementPSVI) email;
short validity = elemPsvi.getValidity();

Schema information is traversed by retrieving element declarations, attribute declarations and type
definitions. The following code example describes how to retrieve the data type name of an element:
XSTypeDefinition elemTypeDef = elemPsvi.getTypeDefinition();
String typeName = elemTypeDef.getName();

Using the DOM level 3 TypeInfo object is another way to access data type information of elements
and attributes. The TypeInfo is part of the XhiveNodeIf interface.

The "xhive-psvi" parameter of the LSParser object must be enabled during parsing to access the
entire PSVI information. A document can be created using the createDocumentPSVI method in the
XhiveLibraryIf interface.

Samples

PSVI.java

API documentation

org.w3c.dom.TypeInfo

EMC Documentum xDB Version 10.5 Manual 225

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-1/
http://xml.apache.org/xerces2-j/faq-xs.html#faq-3
./../../src/samples/manual/PSVI.java
./../apidocs/org/w3c/dom/TypeInfo.html

Catalogs and Validation

com.xhive.dom.interfaces.XhiveNodeIf

org.apache.xerces.xs

226 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/dom/interfaces/XhiveNodeIf.html
./../apidocs/org/apache/xerces/xs/package-summary.html

Chapter 13

Administering xDB

This chapter contains the following topics:

• Admin Client
• Web client
• Using the command-line client
• Creating and restoring backups
• Using the backup() method
• Using the restoreFederation() method
• Using the library backup() method
• Using the restoreLibrary() method
• Connecting to a federation backup
• Managing detachable libraries
• Duplicated transaction log files
• Monitoring statistics
• RAM segments
• Read-only federations
• Federation sets
• Using Secure Sockets Layer (SSL)
• Checking database consistency
• Message logging
• Message logging areas
• Message logging framework

Admin Client
The xDB Admin Client (also known as Administration Client or administration tool) provides
developers, administrators and superusers access to xDB functions through a Swing-based graphical
user interface. The xDB distribution includes the Admin Client java source code, allowing developers
to review its use of the xDB API to perform its tasks.

Admin Client features include:

• a menu-based GUI with menu bar, context-sensitive right-click menus and toolbars

EMC Documentum xDB Version 10.5 Manual 227

Administering xDB

• a data browser that displays database contents using an explorer-like tree view with tabbed content
panels, popup dialogs and messaging

• server, federation, database and segment management

• consistency checking

• backup and restore

• data import and export

• data serialization and deserialization

• user and group management

• library and document management

• index management

• XQuery and XPointer execution and debugging

Using the xDB Admin Client

To start the xDB Admin Client:

1. Execute the xdb admin command in the \bin directory of the xDB installation. On Windows
platforms, you can also use the Windows start menu.

An alternative way to run the Admin Client is to execute the xhive-ant run-admin command in
the \bin directory of the xDB installation. This command compiles and runs the client from the
included source files.

2. Select Database > Connect.
The Connect to a database window displays.

3. Enter a valid database name, user name, and password, then click OK.

The Admin Client displays a tree view of the database in the left panel. The panel to the right displays
details of the node selected in the tree view. Many object-specific operations are accessible by
right-clicking on items in either panel.

The menu bar provides access to general functions. You can use the Help About option to determine
which xDB version you are running.

The status bar in the bottom right corner is a memory usage indicator. Clicking the trash can icon next
to it forces a garbage collect.

228 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Figure 5 Admin Client tree view with the context menu of the root library

There are up to four main nodes in the database tree:

• The Segments node provides the database Administrator user access to the segment properties
and file paths of the database.

• The Groups and Users nodes are used for viewing, adding, and removing users and groups.
• The root-library is the top-level library that contains all other libraries and documents in a
hierarchical order.
The tree can also contain special types of folders, such as Catalogs and Version folders. Catalog
folders contain DTDs and XML schemas. Version folders contain versioning information for
versioned documents.

Figure 6 Library hierarchy example

Most functions are accessible by right-clicking an item in the tree view or in the Contents tab, and
selecting the corresponding option from the corresponding popup-menu. For example, you can
selectively Refresh a part of the tree view, and you can query, import or export the contents of a
specific library, and add or delete users and groups.

Additonal functions are available in the main menu, for example for:

EMC Documentum xDB Version 10.5 Manual 229

Administering xDB

• creating and deleting databases
• changing passwords
• entering a new license key
• performing backup and restore
• checking federation consistency
• using replication

Note: Admin Client preferences, including the last query executed and the last database connection,
are automatically stored using java.util.prefs.

Creating a database using the Admin Client
To create a database using the Admin Client:
1. Select Database > Create database from the Admin Client menu bar.
2. In the Create database dialog, enter a database name, a valid superuser password, and a database

administrator password.

3. Enter optional parameters, if required. The Path option allows you to specify the location of the
default file of the default segment, either as an absolute path, or as a path relative to the default
database location of the federation. TheMax size option specifies the maximum size (in bytes) that
the database file is allowed to grow to. A value of 0 means the size is unlimited.

4. If you want to use a Custom configuration, enter the path to your configuration file, page 230.
5. Click OK.
To connect to the new database, select Database > Create database from the Admin Client menu
bar. In the Connect to database dialog, choose the Database name your want to connect to, and
enter a valid username and password.

Database configuration files
When a database is created, a database configuration file is used to determine what segments and
segment files to create.

Note: Database configuration files do not affect existing databases.

The database configuration file is in XML format, and can include the following elements:

• <xhive-clustering>, page 231

230 EMC Documentum xDB Version 10.5 Manual

Administering xDB

• <segment/>, page 231
• <file/>, page 232

The example configuration file below defines a default database:
<xhive-clustering>
<segment id="default"/>

</xhive-clustering>

<xhive-clustering/>
This document element can be used in a database configuration file.

Child elements

The <xhive-clustering/> element can have the following child elements:

• <segment/>, page 231

<segment/>
The <segment/> element creates a database segment.

Attributes

Name Default Description

id - The ID for the segment. Required attribute. The segment ID should be

unique within the configuration file.

path - The path to the location of the default database file. Optional attribute.

If the path is not supplied, the default database file is stored in the

same directory as the default file of the federated database.

max-size 0 The maximum number of bytes for the default file. By default,

the max-size attribute value is 0, which means the file can have an

unlimited number of bytes. Optional attribute.

temporary false Specifies whether this segment is a temporary data segment. Optional

attribute.

Child elements

The <segment/> element can have the following child element:

• <file/>, page 232

EMC Documentum xDB Version 10.5 Manual 231

Administering xDB

<file/>
The <file/> element creates a database file.

Attributes

Name Default Description

path - The path to the location of the default database file. Optional attribute.

If the path is not supplied, the default database file is stored in the same

directory as the default file of the federated database.

max-size 0 The maximum number of bytes for the default file. By default,

the max-size attribute value is 0, which means the file can have an

unlimited number of bytes. Optional attribute.

Changing the superuser password using the Admin Client

To change the superuser password of the current federation with the Admin Client:

1. Select Federation > Change superuser password from the Admin Client menu bar.

The Change superuser password dialog opens.

2. Enter the new password in the field New superuser password.
3. Retype the new password in the field Retype password.
4. Click OK.
5. If required, enter the current Superuser password.

Changing the administrator password using the Admin
Client

To change a database administrator password with the Admin Client:

1. Select Database > Reset admin password from the Admin Client menu bar.

The Reset admin password dialog opens.

232 EMC Documentum xDB Version 10.5 Manual

Administering xDB

2. Select the Database name of the database on which you want to reset the administrator password.
3. Enter the Superuser password of the current federation.
4. Enter the new administrator password in the field Administrator password.
5. Retype the new administrator password in the field Retype password.
6. Click OK.

Changing a user password using the Admin Client

To change a user password with the Admin Client:

1. Connect the Admin Client to the database.

2. Navigate to the Users list.
3. Right-click the name of the user.

4. Select Properties from the right-click menu.

The Edit a user dialog opens, with the selected user name filled in. This dialog also shows the
group(s) that the user belongs to.

5. Enter the current password.

The Administrator can assign groups, and can set a new password for another user without
providing the current password.

6. Enter the New password for the currently selected user.
7. Retype the new administrator password in the field Retype new password.
8. Click OK.

EMC Documentum xDB Version 10.5 Manual 233

Administering xDB

Importing data

The Import option in the right-click menu of library nodes in the Admin Client opens a dialog for
importing data from documents and/or directories into the selected library.

By default, xDB recreates the directory structure of an imported library.

To import data into a library:

1. Right-click on a library node and select Import.

The Import into library dialog appears, with the Select sources tab selected.

2. Use the Add, Delete and Clear buttons of the Import into library dialog to assemble a list of files
and/or directories to import.

The Add button opens a dialog for selecting items to add to Files and directories to import.
3. Select Library settings as required:

Library settings Description

Flatten library structure Select this option to store all imported data directly
in the target library.

Lock newly created libraries with parent Select this option to lock imported libraries with
the parent library.

Overwrite existing documents with same name Select this option to overwrite documents with
identical names if they already exist in the library.

Prune empty libraries Select this option to ignore empty libraries.

4. Click the Filters tab and define import filters for all file types to import.
This tab contains user-definable filters that determine the storage type for each import file type.
Filter definitions are stored in the Admin Client preferences. By default, the importer includes

234 EMC Documentum xDB Version 10.5 Manual

Administering xDB

filters for files with .xml and .xsl extensions. Files with file extensions that have no filter defined
are ignored and not imported into the database.
If you want to import graphics from files of file type .gif, you should add a file filter for that type,
with storage type Blob.

5. Click the Parser configuration tab and specify the parser options.
You can specify whether to use validation, what information items of the original file to preserve in
the parsed Document, and other properties. The parser configuration options are not stored in the
Admin Client preferences.

Exporting data
Data can be exported using the Export option in the right-click menu of library, BLOB, and document
nodes. You can select export location and DOM configuration options.

To export data:
1. Right-click on the library, BLOB, or document node that you want to export.
2. Select option Export from the right-click menu.

The Export dialog appears.

3. Select a target directory.
4. Configure export options as required.
5. Click OK.

Backing up a federation
You can back up a federation using the Backup option of the Federation menu. The Backup dialog
has options to create either a normal, an incremental or a standalone backup. If the federation contains
detachable libraries, they can be excluded from the backup.

Note: It is good practice to use consistent, self-explanatory file names and file extensions for backups,
and to keep related backup files files together in a single, dedicated and secure location. For example,

EMC Documentum xDB Version 10.5 Manual 235

Administering xDB

keeping a backup and its subsequent increments in one place can make the restore process easier and
more reliable. Creating backups and their increments only to new files in an empty location helps to
prevent accidental overwriting of any preceeding backups or increments. Preferably, a backup location
contains only valid backup files. The Admin Client, page 227 has a Backup management dialog
that shows files name, backup type, creation date/time and other backup metadata, page 266. This
dialog can display a single backup file, or all backup files in an entire directory, optionally with its
subdirectories, provided the selected directories contain only backup files.

To back up a federation:
1. Connect of the Admin Client to the federation that you want to back up.
2. Select option Backup from the Federation. If required, enter the superuser password.

The Backup dialog appears.
3. Specify an output directory and filename.

Note: Choose the filename with care. If a file with the same name already exists, it will be
overwritten without warning.

4. Select a backup option: Default, Incremental or Standalone. With the Standalone option, you
can choose to keep log files.

5. Optionally, if the federation has detachable read-only libraries that you want to exclude from
the backup, expand the tree view of the Select libraries to exclude control, and mark them for
exclusion.

6. Click OK.

Restoring a federation backup
You can restore a federation from a backup file using the Restore option of the Federation menu.

Note: The Admin Client has a Backup management dialog that shows backup file name, backup
type, creation date/time and other backup metadata, page 266. This dialog can display a single backup
file, or all backup files in an entire directory, optionally with its subdirectories, provided the selected
directories contain only backup files.

To restore a federation:

236 EMC Documentum xDB Version 10.5 Manual

Administering xDB

1. Select option Restore from the Federation menu of the Admin Client. If required, enter the
superuser password.
The Restore dialog appears:

2. Specify the federation backup file that you want to restore.
3. If you don’t want to restore to the default location, specify a Federation target location for

the restored federation.

Note: If you want to restore to an existing federation, ensure that there is no page server connected
to it.

4. Select a restore paths option. Restore can use the paths in the bootstrap file, or ignore absolute
paths in the bootstrap file, or load a file that maps new restore paths to the old paths. For an example
of such a file, refer to the section about the xdb restore command, page 264.

5. Click OK.
6. If you are restoring a set of incremental backups, repeat the steps above for each increment, in the

order in which the backup files were created.
Depending on your choices and circumstances, the restore process may require further action. For
example:

• If the specified federation target location already contains federation files, restore asks for permission
before overwriting them. If you refuse permission, the restore will abort.

• If you try to restore to an existing federation while a page server is running on it, you’ll get an error
message. For restore to succeed, stop its page server.

• If you try to restore a backup increment to an existing federation, you will get an error message if its
page server has been started between the previous and the current restore. Stop the page server,
ensure that it stays down, and redo the entire restore, starting with the full federation backup.

• To verify the result, start the page server and run a consistency check on the federation.

Serializing data
You can serialize a library, document or BLOB to a file using the Serialize option in the right-click
menu of the object. Subsequently, you can deserialize the object from the file to any library.

You can use serialization and deserialization for backup/restore of content, and for copying content
from one library or database to another.

Note: Serialization files are not human-readable, and should not be edited.

To serialize data:
1. Right-click on the library, BLOB, or document node that you want to serialize.

EMC Documentum xDB Version 10.5 Manual 237

Administering xDB

a. If the object is a library, select menu option Library management from the right-click menu.
2. Select option Serialize.

The Serialize dialog appears.
3. Select a target directory.
4. Enter a file name.

Use a meaningful file name, for example a name that describes the file content, or a name that
relates to its purpose.

Note: If you use the name of an existing file, that file will be overwritten without warning.

5. Click Serialize.

Deserializing data
You can use the Deserialize option in the right-click Library management option of a library to add
content from a file created using the Serialize option.

Note: Serialization files are not human-readable, and should not be edited.

To deserialize data:
1. Right-click on the library where you want to serialize data, and select submenu option Library

management.
2. Select option Deserialize.

The Deserialize dialog appears.
3. Select a source directory and file.
4. Enter a file name.

Use a meaningful file name, for example a name that describes the file content, or a name that
relates to its purpose.

Note: The file that you select must have been created using the Serialize option.

5. Click Deserialize.

Deserializing the root library
You can use the Deserialize root library option in the right-click menu of the database to replace the
entire root library with content from a file created by serializing a library.

Note: Serialization files are not human-readable, and should not be edited.

To deserialize data:
1. Right-click on the database node in the Adminclient..
2. Select option Deserialize root library.

The Deserialize root library dialog appears.
3. Select a source directory and file.

Note: The file that you select must have been created using the Serialize option of the Library
management menu of the root-library.

238 EMC Documentum xDB Version 10.5 Manual

Administering xDB

4. Click Deserialize root library.

Serializing users and groups
You can serialize the users and groups of a database using the Serialize users and groups option in the
right-click menu of the database. Subsequently, you can deserialize the users and groups from the file.

You can use user and group serialization and deserialization for backup/restore of user data, and for
copying user data from one database to another.

Note: Serialization files are not human-readable, and should not be edited.

To serialize users and groups:
1. Right-click on the database that you want to serialize.
2. Select option Serialize users and groups.

The Serialize users and groups dialog appears.
3. Select a target directory.
4. Enter a file name.

Use a meaningful file name, for example a name that describes the file content, or a name that
relates to its purpose.

Note: If you use the name of an existing file, that file will be overwritten without warning.

5. Click Serialize users and groups.

Deserializing users and groups
You can use the Deserialize users and groups option in the right-click menu of the database to replace
the users and groups with data from a file created by serializing users and groups.

Note: Serialization files are not human-readable, and should not be edited.

To deserialize data:
1. Right-click on the database node in the Adminclient.
2. Select option Deserialize users and groups.

The Deserialize users and groups dialog appears.
3. Select a source directory and file.

Note: The file that you select must have been created using the Serialize users and groups option.

4. Click Deserialize users and groups.

Comparison of online backup and serialization
xDB supports serialization and deserialization of individual libraries and documents with their
metadata, such as indexing, versioning and authority information. The serialization and deserialization
processes use an internal binary format. Some practical differences between online backup/restore and
(de)serialization are described below.

EMC Documentum xDB Version 10.5 Manual 239

Administering xDB

Table 33 Comparison of online backup and serialization

Online backup/restore Serialization/Deserialization

Backs up a complete federation. Stores individual libraries or documents.

Does not use locks or transactions. Takes read locks on serialized data.

Fast. Less fast.

Restores without running the server. Deserializes with running server.

Restores exactly the same federation contents. Allows deserialization to different federation,
database or parent library.

Serialization and deserialization can be done using right-click menu options of Admin Client.

Editing documents

To edit documents in the xDB Adminclient:

1. Right-click on the document you want to edit.

2. The right-click menu offers a different editing option for versioned documents than for unversioned
documents, because versioned documents are read-only.

• If you want to browse an unversioned document as a tree, select Browse document.

In the document browser, you can right-click a node to open a menu with options to edit or
delete the node.

• Select Edit as text to open the text editor on an unversioned document or document node:

• Select Checkout/Edit/Checkin to open the text editor on a versioned document.
3. Edit the text.

• To store your changes, select Save changes, specify parser options as required and click OK.
• To discard your changes, click Cancel.

240 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Adding indexes
When you select a library or a document in the left panel of the administration client, you can use the
Indexes tab of the right panel to view and manage its list of indexes. For information on indexing,
refer to indexes, page 150.

Figure 7 Adding indexes

Merge tasks can be ran/killed by using the context menu

Running queries
XQuery is one of several querying mechanisms supported by xDB. XPath is a subset of XQuery - what
you can do in XPath, you can do in XQuery, and more.

For libraries and documents, the Execute XQuery option in the right-click menu opens a new
XQuery panel at the bottom of the window. Queries are executed in the context of the selected
library or document. The Adminclient uses a read-only transaction (which does not take locks) for
normal XQuery execution, but it will use a read-write transaction if it detects XQuery update syntax,
page 211 in your query.

EMC Documentum xDB Version 10.5 Manual 241

Administering xDB

Figure 8 XQuery tabs and options

The XQuery panel contains several tabs, as described in table (XQuery tab and options, page 242).

Table 34 XQuery tabs and options

XQuery tab Description

Query On the Query tab, you can enter your XQuery text.

Click the Run button (green triangle) on the toolbar at the left to run your query.

The XQuery toolbar includes buttons to close the panel, to copy, format and debug the
xquery, to load and save queries, and more. The last executed query is remembered.

Result tree The Result tree tab displays query results in a tree view.

If the query involves the original nodes that were not created through element
constructors, they can be deleted from the tree and are deleted in the original database.

A transaction is kept open while the tree is open, including old versions of the data. In a
very active federation, the result tree tab should be disabled or cleared using the Do not
use result tree button, which causes the query transaction to be closed immediately after
completing a query. The query result can still be viewed in the Result text tab.

The Result tree tab and button are disabled for update queries.

Result text The Result text tab displays the query results as text.

242 EMC Documentum xDB Version 10.5 Manual

Administering xDB

XQuery tab Description

Query debug The Query debug tab displays debug information about the query, if debug options
were configured in the query. For more information about debug options, see XQuery
options, page 179.

The following example shows debug output for a value index query:

Creating query plan on node /UN Charter
for expression
.../descendant-or-self::node()/child::chapter[@number < ...]

Looking for value index on chapter/@number (sorted) (type=INTEGER)
Found index "Value index"
Looking up "3" in index "Value index"
Using query plan: index(Value index)

Optimizer debug The Optimizer debug tab displays an index plan for a path expression. The output
contains detailed information on the indexes that are considered, including those that are
eliminated, and how a query plan is constructed.

When executing an XPath/XUpdate/XQuery, if the results are idle, the underlying session will timeout.
The user will then be given a choice whether or not to re-execute the action: if not then the results
tree will be disabled. The default timeout is set to 5 minutes and can be set through the Options
dialog of the Settings menu.

Profiling XQueries
Xquery profiling can be useful in finding why a query runs slow. The XQuery panel of the Admin
Client provides an option for profiling XQueries. For information about the XQuery panel, see
Running queries, page 241.

Click the Show Query plan (clock) button of the XQuery panel to open a new window showing
a tree view of the static query plan.

EMC Documentum xDB Version 10.5 Manual 243

Administering xDB

Figure 9 XQuery query plan dialog after profiling

Click the Profile button at the top of the Query plan window to run the XQuery with profiling enabled.
After profiling a query, the query plan dialog shows the values of performance-relevant attributes,
with calculated percentages of the totals in additional columns.

You can copy the resulting information to clipboard as XML text by clicking theCopy selection button.
If you first select a node or a range of lines, only the selected part of the display is copied to clipboard.

Format

Profiling produces an XML document contains the original query text and a tree of XML nodes that
represent the functions, modules, variables and expressions of the XQuery.

Where applicable, these nodes have a location attribute that points to the filename, line, and column
number of the source file where this expression was parsed from. Many expressions also have
additional attributes like the variable name for a for clause, or the function name for a function. In
the document, outer expressions that are XML parent nodes consume the results from their child
nodes, input expressions (for example the input to a for clause) come before output expressions
(like the return clause in a for clause).

Profiled expression nodes will have the attributes accumulatedTime, calls, values, and
pagesRead. These represent the total time spent evaluating this expression, the number of times this
expression was evaluated, the number of values this expression produced, and the number of database
pages that had to be accessed for producing the result.

In addition to timings, the <path/> nodes representing path expressions will have an <indexplans/>
child node that contains the different index plans chosen for different libraries, and within those plans a
description of the lookup steps used to evaluate the path expressions.

244 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Note: The profiling XML document format is a work in progress and subject to change without notice.
Note: The profile will not account for pages read on the server and not transferred to the client in a
client server deployment. In practice, this means pagesRead will not include pages read in concurrent
indexes and multipath indexes. Note: If an expression uses a variable, the time spent and the pages
read to evaluate that variable will be accounted twice: once for the expression that binds the variable,
and once for the first expression that uses the variable. This is due to the lazy evaluation nature of
xDB’s XQuery implementation. However, the time spent on a the parent expression relative to the
variable-binding expression will typically be correct.

Example XQuery profile

<?xml version="1.0" encoding="UTF-16"?>
<queryplan end-time="2010-05-04T15:55:35.038Z" start-time="2010-05-04T15:55:35.026Z"

xDB-version="xDB main@621581">
<XQueryQuery accumulatedTime="10" calls="1" pagesRead="5" values="1">

<querytext>declare option xhive:index-debug ’true’;
declare option xhive:queryplan-debug ’true’;
declare option xhive:pathexpr-debug ’true’;
(: declare option xhive:ignore-indexes ’mp1’;:)
let $othellodocs := /feed/doc[. contains text ’Othello’],

$books := for $book in /bib/book[author/last = ’Stevens’] return $book
return <res>{ $othellodocs, $books }</res></querytext>

<functions/>
<variables/>
<modules/>
<let accumulatedTime="10" calls="1" location="query:5:1" pagesRead="5"

type="item()*" values="1" variable="othellodocs@0">
<path accumulatedTime="6" calls="1" location="query:5:21" numExpr="2"

onlyChildren="true" pagesRead="3" returnBlobs="false"
usesNotOrOr="false" values="0">

<indexplans>
<indexplan context="/" node="primary">

<lookup accumulatedTime="2" calls="1" conditions="1"
index="mp1" lookup="server-side" pagesRead="2" type="11"
values="0"/>

</indexplan>
</indexplans>
<path path=".../child::feed/child::doc[. contains text Othello]">

<root accumulatedTime="0" calls="1" location="query:5:21"
pagesRead="0" values="0"/>

</path>
</path>
<let accumulatedTime="10" calls="1" location="query:5:54" pagesRead="5"

type="item()*" values="1" variable="books@2">
<for accumulatedTime="2" calls="1" location="query:6:15" pagesRead="2"

type="item()*" values="2" variable="book@1">
<path accumulatedTime="1" calls="1" location="query:6:28"

numExpr="2" onlyChildren="true" pagesRead="2"
returnBlobs="false" usesNotOrOr="false" values="2">

<indexplans>
<indexplan context="/" node="primary"/>
<indexplan context="/dewiki20m.xml" node="primary"/>
<indexplan context="/bib.xml" node="primary"/>

</indexplans>
<path path=".../child::bib/child::book

[child::author/child::last[. = "Stevens"]]">

EMC Documentum xDB Version 10.5 Manual 245

Administering xDB

<root accumulatedTime="0" calls="1" location="query:6:28"
pagesRead="0" values="0"/>

</path>
</path>
<variable-access accumulatedTime="1" calls="2" location="query:6:71"

pagesRead="0" values="2" variable="book@1"/>
</for>
<element-constructor accumulatedTime="10" calls="1" location="query:7:8"

pagesRead="5" qname="res" values="1">
<sequence accumulatedTime="8" calls="1" location="query:7:8"

pagesRead="5" values="3">
<sequence accumulatedTime="8" calls="1" location="query:7:27"

pagesRead="5" values="2">
<variable-access accumulatedTime="6" calls="1"

location="query:7:16" pagesRead="3"
values="0" variable="othellodocs@0"/>

<variable-access accumulatedTime="2" calls="1"
location="query:7:30" pagesRead="2"
values="2" variable="books@2"/>

</sequence>
<literal-content accumulatedTime="0" calls="1" location="query:0:-1"

pagesRead="0" value="" values="1"/>
</sequence>

</element-constructor>
</let>

</let>
</XQueryQuery>

</queryplan>

Web client
The web client provides administrators and superusers access to some key database functions, including
management of users and indexes and execution of queries. It is based on the xDB REST API.

By default, its server starts automatically as part of the database server and runs on port 1280. During
xDB installation, this can be disabled or set to a different port. These settings are stored in the
xdb.properties configuration file. when running the database server from the command line, you
can choose to disable the web server.

To unlock administrative actions on the federation, the username superuser must be entered, together
with the password provided during setup.

To connect to a database, the username Administrator must be entered, together with the password that
was entered when creating the database.

Using the command-line client
xDB’s command-line client offers commands for various administative purposes, including data
backup/restore. It can be used from terminals or scripting languages. For a list of commands, refer
to Command-line client commands, page 248.

246 EMC Documentum xDB Version 10.5 Manual

Administering xDB

The command-line client can execute single commands and can also run as an interactive console,
page 247. Commands are always executed in auto-commit mode. All changes are made persistent
after each command, before control is returned to the command line.

To use the command-line client to run a single xdb command, enter that command on your operating
system’s command line in the bin subdirectory of the xDB installation. Note: The Windows installer
automatically adds the xdb command to the PATH variable.

Single commands must be entered using the following syntax:
xdb <command> [arguments]

Enter xdb help to display the available commands with their descriptions.

Enter xdb help <command> to display the available options for a command.

Parameters containing whitespace must be enclosed in single quotes (’) or double quotes (") or escaped
by preceding the whitespace with a backslash (\). Quotes within parameters can be escaped using the
backslash character (\’ or \"), the backslash itself is escaped by doubling (\\).

The xdb command accepts GNU-style options, either in a long version such as --federation
or as an abbreviated version such as -f for some options. If an option takes a value, that
value must directly follow the option, separated by whitespace, for example --federation
xhive://localhost:1235. Abbreviated options can be clustered if only the last option takes a
value, for example -vyf xhive://localhost:1235.

Most commands have a number of options in common; these are called global options, page 251.
When passed to the xdb command, these options also serve as default values for any subsequent
commands in interactive mode. The interactive console will cache username and password, server
address, server port, web server properties and database name between commands, so after the first
command that accesses a given database, subsequent commands need not ask for them again.

Default values for most command options are stored in the xdb.properties configuration file in the
home directory of each xDB user. These options need not be specified on the command line every time
a command is invoked. The default values in the configuration file can be modified by specifying the
corresponding parameter on the command line. For more information about the configuration settings
and locations, see Configuration files, page 68.

Starting the interactive console

The interactive console accepts all regular xdb commands, using the same syntax. To start the
interactive console, run the xdb command without options:
xdb

To close the console, type exit.

Interactive console example

user@localhost: ~ $ xdb
xDB 10.5.0 command line client (c) 1999-2013 EMC Corporation
Type ’help’ for a list of commands and options, type ’exit’ to leave the shell.
xdb> ls -d united_nations
abc.xml

EMC Documentum xDB Version 10.5 Manual 247

Administering xDB

xdb> import myfile.xml /
Parsing XML document myfile.xml ...
Stored 1 file(s).
xdb> ls -d united_nations
abc.xml
myfile.xml
xdb>exit

Command-line client commands

Commands

The table below lists the commands that are available from the xDB command-line client, page 246.

Table 35 Command line client commands

Command Description

add-binding bind a library to specified xDB server node in addition to all the existing
bindings.

add-log-directory add a secondary transaction log files directory to a node

add-node add a server node

add-segment add a segment to the database

add-file add a file to a database segment

admin start the admin client graphical user interface

attach-library attach a library back into a database from detached state.

backup backup a complete federation

backup-library backup a library or multiple libraries within a database

cat prints a file

cd change the current directory

change-binding bind a library to specified xDB server node.

check-database check database consistency

check-federation check federation consistency

check-librarychild check library child consistency

check-node check node consistency

clean-database clean a database’s MultiPath index segments

clean-library clean a library’s MultiPath index segments

configure-federation change federation settings (superuser password, license key)

create-database create a database

create-federation create a federation

create-replica create a replica

248 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Command Description

delete-database delete a database

detach-library detach a library if it is detachable

federation-set manage a federation set (create, add federations, remove federations)

force-detach forcibly detach a library on which the library is created.

help print a help message

import import documents into the database

info print session information

ll print a list of database objects and their attributes

ls print a list of database objects

mkdir create directories (always creates missing parents)

mv move a file or folder

put create a document in the database

remove-binding remove specified server node as one of the binding nodes of a library.

remove-log-directory remove a secondary transaction log files directory from a node

remove-node remove a server node

remove-segment delete a segment from the database

repair-blacklists repair MultiPath index blacklists

repair-addblacknode add black node to MultiPath index

repair-indexinfo repair MultiPath index information

repair-mappings repair MultiPath index file mappings

repair-merge merge MultiPath index

repair-removeblacknode remove black node from MultiPath index

repair-segments repair MultiPath index segments

repair-set-usable set MultiPath index usable

repair-searchable flip library non-searchable flag (also repairs non-searchable flag issue from
xDB 9.0.0)

repair-input-encoding repair or check input encoding after upgrade to xDB 7.1

restore restore a complete federation from a backup

restore-library restore one library or multiple libraries within a database from a backup

rm delete files/directories

run-server start an xDB server

run-server-repair Starts an xDB server node in repair mode, suitable for index repair.

set-file-maxsize set max size of a segment datafile

set-library-state set states of library

show-backup-metadata show metadata of a specified backup file or multiple backup files in a
specified folder. Metadata fields will be separated by tabs.

show-segment show properties of a segment. Fields will be separated by tabs.

show-unusable-indexes show information of all unusable indexes in specified database

EMC Documentum xDB Version 10.5 Manual 249

Administering xDB

Command Description

show-unusable-libraries show full paths of all unusable libraries in specified database

statistics print statistics about MultiPath index

statistics-bl print MultiPath index blacklists info

statistics-li print subindex specific information

statistics-ls print MultiPath index sub indexes info

stop-server stop a running xDB server

suspend-diskwrites suspend or resume disk writes

sync-entries sync index record and index_info entries

update-node update a server node

xquery execute an XQuery, either given as a direct argument or through the --file
option.

Creating a federation

When xDB is installed, a federation is created automatically. Additional federations can be created
using the xdb create-federation command or the Admin Client.

The xdb create-federation command supports the following options:

Option Description

-f --federation
ARG

The absolute path and file name of the bootstrap file for the new federation.

--log ARG Comma separated list of transaction log files directories for the new federation.
The first one in the list represents the primary log directory. Relative paths, if
used, are resolved relative to the bootstrap file directory. If not specified, a single
log directory for the node will be created in default location.

Note: For performance reasons, it is best practice to keep the transaction log files
on a different physical hard disk than the database data pages.

--pagesize ARG The database page size for the new federation.

-p --passwd
<value>

The initial superuser password.

Example

The following example uses the xdb create-federation command to create a federation.
xdb create-federation --log /var/dblogs/fed1logs \
--federation /var/databases/Fedration1.bootstrap \

250 EMC Documentum xDB Version 10.5 Manual

Administering xDB

--passwd secret --pagesize 4096

Creating a database using the command line
1. Open a command line window and change to the bin directory of the xDB installation.
2. Run the xdb create-database command:

xdb create-database -p SuperUserPassword --adminpwd
AdminPassword DatabaseName

The xdb info command
The xdb info command sends debug information about open transactions and their associated locks to
standard output.

Locks are shown as either R(ead) or W(rite) locks, with an internal ID and a short description of
the locked object.

xdb> info -f xhive://localhost:1236
Session adminclient
Remote connection from Socket[...]
Connected as Administrator to united_nations
Joined by thread Thread[request handler Socket[...][F:XhiveDatabase.bootstrap],5,main]
Transaction id = 3278
owns locks:
R 26 Document /CreateTransactionSample - UN Charter - Chapter 9
R c Index Library Id Index on /
R a Library /
R 1 Database united_nations

The xdb info command only shows open sessions. Closed sessions are not listed in any internal
administration, and so are available for garbage collection if they are no longer referenced by user code.

A <page not in cache> entry in the description usually means that the locked object is new and its first
page has not yet been entered in the database server cache. Another possibilty is that the first object
page has been removed from the cache to create space for other pages; in this case, the object name is
not retrieved from disk, to avoid affecting the performance of current transactions.

Command-line client gobal options
Most xdb commands have the following options in common:
Table 37 Global command line options

Option Description

-u --username ARG The user name. If omitted, xDB can automatically use the superuser or
administrator user name where needed.

-p --password ARG The password of the user.

EMC Documentum xDB Version 10.5 Manual 251

Administering xDB

Option Description

-f --federation ARG The federation bootstrap path or URL.

-d --database ARG The name of the database.

-c --cache ARG The cache pages for the database session.

-y --non-interactive Runs the non-interactive mode that does not ask for missing parameters.

--debug Prints stack traces.

--stdout ARG Redirects standard output to a file.

--stdout-append ARG Redirects standard output to a file (append mode).

--stderr ARG Redirects standard error output to a file.

--stderr-append ARG Redirects standard error output to a file (append mode).

-v --verbose Runs in extra verbose mode.

-V --version Prints version information and exits.

-h --help Prints overview of common options and commands.

Server-related commands

add-node

Adds an xDB server node.

Usage: xdb add-node [options]

Argument Description

--logpath ARG Comma separated list of transaction log files
directories for the server node to be added. The first
one in the list represents the primary log directory.
Relative paths, if used, are resolved relative to
the bootstrap file directory. If not specified, a
single log directory for the node will be created
in default location. If present, the log directories
must be accessible to both primary and the specified
non-primary node.

--port ARG Port number of the server node to be added.

--host ARG Host name of the server node to be added. Required.

--nodename ARG Name of the server node to be added. Required.

add-log-directory

Adds a transaction log files directory to a server node.

252 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Usage: xdb add-log-directory [options]

Argument Description

--logpath ARG Log directory to be added (relative or absolute path).
Relative paths, if used, are resolved relative to the
bootstrap file directory. It must be accessible to both
primary and the (possibly) specified non-primary
node. Required.

--nodename ARG The name of the node to which the log directory will
be added. Optional. Primary node by default.

remove-log-directory

Removes a transaction log files directory from a server node.

Usage: xdb remove-log-directory [options]

Argument Description

--logpath ARG Log directory to remove from the server node (relative
or absolute path). Relative paths, if used, are resolved
relative to the bootstrap file directory. The primary
log directory cannot be removed. Required.

--nodename ARG The name of the node from which the log directory
will be removed. Optional. Primary node by default.

remove-node

Removes an existing xDB server node.

Usage: xdb remove-node [options]

Argument Description

--nodename ARG Name of the server node to be deleted. Required.

run-server

Starts an xDB server node.

Usage: xdb run-server [options]

EMC Documentum xDB Version 10.5 Manual 253

Administering xDB

Argument Description

--address ARG Listen address. The address argument can be used on
a multihomed host for a ServerSocket that will only
accept connect requests to one of its addresses. The
value "*" means the server will accept connections
on any/all local addresses.

--port ARG Port number of the server node.

--nodename ARG Name of the server node to start. Optional. If
nodename is not specified, the command will attempt
to start the primary node.

--force If specified, ignore errors during recovery and mark
offending libraries as unusable.

-f ARG | --federation ARG Path to bootstrap file.

run-server-repair

Starts an xDB server node in a special mode suitable for index repair.

Usage: xdb run-server-repair [options]

The arguments are the same as in the case of the run-server command.

stop-server

Stops a running xDB server node.

Note: This command only supports remote shutdown, and the primary node should be running when
this command is executed.

Usage: xdb stop-server [options]

Argument Description

--nodename ARG Name of the server node to stop.

update-node

Updates an existing xDB server node.

Usage: xdb update-node [options]

You must specify at least one of the arguments logpath, port, and host, otherwise there is nothing
to update.

254 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Argument Description

--logpath ARG New log directory for the server node to be updated.
Optional.

If not specified, the log path will not be updated. If
specified, the directory must be accessible to both the
primary and the specified non-primary nodes.

--port ARG New port number of the server node to be updated.
Optional.

--host ARG New host name of the server node to be updated.
Optional.

--nodename ARG Name of the server node to be updated. Requried.

Library-related commands

add-binding

Binds a library to a specified xDB server node in addition to all the existing bindings.

Usage: xdb add-binding [options] path

Argument Description

path Path of a library which will be bound to the specified
node in addition to all the existing bindings. Supports
multiple libraries, separated by space.

--nodename ARG The name of the node to which to bind the library
(read-only libraries can bind to multiple nodes).
Required.

add-file

Adds a new database file to a database segment.

Usage: xdb add-file [options] segmentid

Argument Description

segmentid The unique ID of the segment to which the file will
be added.

--path ARG The path to server side directory where the database
file should be created. If not specified, the file will be
created in the path for the federation default database.

EMC Documentum xDB Version 10.5 Manual 255

Administering xDB

Argument Description

--maxsize ARG The maximum size (in bytes) that the file is allowed
to grow to. Default is 0. A value of 0 means the size
is unlimited.

-d ARG | --database ARG Database name. Required.

add-segment

Adds a segment to the database.

Usage: xdb add-segment [options] segmentid

Argument Description

segmentid The unique ID of the segment to be added. Required.
Supports multiple segments, separated by space.

--path ARG The path to the location where the default file of the
segment should be created. If not specified, then the
path is the same as that for the federation default
database.

--maxsize ARG The maximum size (in bytes) that the file is allowed
to grow to. Default is 0. A value of 0 means the size
is unlimited.

--temp If specified, create a new segment for temporary data.

-d ARG | --database ARG Database name. Required.

--nodename ARG The name of the server node to which the segment
should be bound. Defaults to primary node.

attach-library

Attaches a library back into a database from a detached state.

Usage: xdb attach-library [options] segmentid target

Argument Description

segmentid ID of the segment which contains the root page of
the library. Required.

target Path of target library which the attached library is
appended to. Required.

-d ARG | --database ARG Database name. Required.

256 EMC Documentum xDB Version 10.5 Manual

Administering xDB

backup-library

Backs up one or more libraries within a database.

Usage: xdb backup-library [options] path

Argument Description

path Path(s) of library or libraries to backup. Required.
Supports multiple libraries, separated by space.

--overwrite Overwrite output file if it exists. Optional.

-o ARG | --file ARG Output file.

-d ARG | --database ARG Database name. Required.

change-binding

Binds a library to a specified xDB server node.

Usage: xdb change-binding [options] path

Argument Description

path Path of a library which will be bound to the specified
node. Supports multiple libraries, separated by space.

--nodename ARG The name of the node to which to bind the library.
Required.

detach-library

Detaches a library if it is detachable.

Usage: xdb detach-library [options] path

Argument Description

path Path of a library to detach. Supports multiple libraries,
separated by space.

-d ARG | --database ARG Database name. Required.

force-detach

Unconditionally detaches a segment on which the library has been created.

Usage: xdb force-detach [options] segment

EMC Documentum xDB Version 10.5 Manual 257

Administering xDB

Argument Description

segment The ID of the segment on which the library was
created.

-d ARG | --database ARG Database name.

remove-binding

Removes a specified server node as one of the binding nodes of a library.

Usage: xdb remove-binding [options] path
Argument Description

path Path of a library one of whose binding nodes will be
removed. Supports multiple libraries, separated by
space.

--nodename ARG The name of the node which will be removed as one
of the binding nodes of the library. Required.

remove-segment

Deletes a segment from the database.

Usage: xdb remove-segment [options] segmentid

Argument Description

segmentid The ID of the segment to remove. Required. Supports
multiple segments, separated by space.

-d ARG | --database Database name. Required.

restore-library

Restores one library or multiple libraries within a database from a backup.

Usage: xdb restore-library [options] path

Argument Description

path Path of one library or multiple libraries to restore,
separated by space. Optional. If not specified, restore
all libraries in the backup file.

258 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Argument Description

--overwrite Overwrite data files if they exist. Optional.

--file Input file. Optional. If not specified, use standard
input.

set-file-maxsize

Sets the max size of a segment database file.

Usage: xdb set-file-maxsize [options] path

Argument Description

path The full path of the database file (as produced by the
show-segment command).

--segment ARG The id of the segment which the datafile belongs to.

--maxsize ARG The maximum size (in bytes) that the file is allowed
to grow to. A value of 0 means the size is unlimited.
Required.

-d ARG | --database ARG Database name. Required.

set-library-state

Sets the state of a library.

Usage: xdb set-library-state [options] path

Argument Description

path Path of a library whose state will be changed.
Supports multiple paths, separated by space.

--searchable true|false Set the library to searchable or non-searchable.
Optional. If not specified, the library search-state
remains unchanged.

EMC Documentum xDB Version 10.5 Manual 259

Administering xDB

Argument Description

--readonly true|false [--recursive]

Set the library state to read-only or read-write.
Optional. If not specified, the library read-state
remains unchanged. If the --recursive option is
specified, set specified read-state on the library
including the descendants; if not specified, only set
state on this library.

--unusable Set the library state to unusable. Optional. This option
cannot be used together with options --readonly
and/or --searchable.

show-segment

Shows all properties of a segment, including the segment paths. Properties will be separated by space.

Usage: xdb show-segment [options] segmentid

Argument Description

segmentid The ID of the segment whose properties will show.
Required. Supports multiple segments, separated by
space.

--datafile true|false If true, show only information about the database files
in the segment, including full path, maximum file size
and current file size.

-d ARG | --database ARG Database name. Required.

show-unusable-libraries

Shows full paths of all unusable libraries in specified database.

Usage: xdb show-unusable-libraries [options]

Argument Description

-d ARG | --database ARG Database name.

260 EMC Documentum xDB Version 10.5 Manual

Administering xDB

General commands

ls

Lists database contents.

Usage: xdb ls [options] path

Argument Description

path Path to perform the operation on. Supports multiple
paths, separated by space.

--type ARG Only list contents of the given type. Must be either
document, library, or detachable (only list detachable
library children).

--details List detailed properties in columns separated by tabs.
If this option is specified, all library properties are
shown, including segment IDs.

show-backup-metadata

Shows metadata related to a specified backup file, or to all backup files in a specified folder. Metadata
fields will be separated by spaces.

Usage: xdb show-backup-metadata [options] path

Argument Description

path File path. If the path denotes is a normal backup file,
show metadata of the backup file; if the path denotes
a folder, show backup metadata of every file in the
specified folder.

--recursive Show backup metadata of every file in the specified
folder and its subfolders recursively. Ignored if the
path denotes a normal backup file.

show-unusable-indexes

Shows information regarding all unusable indexes in a specified database.

Usage: xdb show-unusable-indexes [options]

Argument Description

-d ARG | --database ARG Database name.

EMC Documentum xDB Version 10.5 Manual 261

Administering xDB

Creating and restoring backups

It is best practice to back up your xDB federations on a regular basis, to minimize data loss in case of a
system failure. The xDB administration tools provide backup/restore functionality for:

• creating and restoring full and incremental backups of federations

• backing up and restoring libraries

• (de)serializing libraries and documents

A backup made while any xDB code is running is called an online backup, or hot backup.

A backup made while no xDB code is running is called an offline backup, or cold backup.

Federation backup and restore

Possible federation backup scenarios include:

• Online backup: xDB backs up an entire active federation. For creating and restoring online (hot)
backups, you can use any of the following xDB tools:

– the xdb backup and xdb restore commands of the command line client

– the backup and restore dialogs of the Admin Client

– the Ant tasks <backup/> and <restore/>

• Incremental backup, page 263: xDB backs up only the changes since the most recent online or
incremental backup. Note: xDB provides a standalone option to back up the entire federation
without affecting the current sequence of incremental backups.

• Offline backup, page 266: provided that no xDB code is running on a federation, a conventional file
backup utility can be used for a cold backup of the entire inactive federation. An alternative is to run
the xdb backup command specifying the federation bootstrap file as the federation. If xDB code is
running on the federation, use of external backup tools is not a good choice. Even if no transactions
are open, the server can still flush dirty pages from the cache to the database files during the backup,
which could result in data inconsistency in the backup files.

• Snapshot backup, page 266

To allow for a low-level software or hardware tool to take snapshots of an active federation, xDB
write activity can be temporarily suspended.

By default, xDB restores all files to the backup location, and does not overwrite existing files. The
following restrictions apply to restoring backups:

• Before restoring incremental backups, a full backup must be restored.

• Incremental backups must be restored in the order they were created.

• Any existing database files must be deleted or moved manually before restoring a federation.

262 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Note: You must restore online backups using the same xDB version that they were taken on. If you
want to restore a database/federation from a backup taken on an older xDB version, you must do so
using that xDB version, then cleanly shutdown the server and upgrade.

Note: A federation server must never be started before the last incremental backup has been restored.
It is not possible to restore any further incremental backups after starting the server.

Running incremental backups

Incremental backups store only the data that has been modified since the most recent full or
incremental backup.

The federation’s primary transaction log is stored in the backup file. By default, any log files that are
no longer needed for transaction rollback or recovery are automatically deleted.

To allow incremental backups, the keep-log-files option of the federation must be enabled before
creating the initial full backup. You can set this manually, either:

• in the Admin Client, by using the Set keep-log-files option dialog, accessible through the Federation
menu’s option Change keep-log-file option.

• in the bootstrap file, by seting the keep-log-files attribute of the log element to true . Note: The
bootstrap file can only be edited if xDB is not running.

When the keep-log-file option is enabled, obsolete log files are only removed when a backup
is created.

You can perform incremental backups with the Admin Client or the Command Line Client:

• in the Admin Client, select the Backup option of the Federation menu, and set the Incremental
option of the Backup dialog,

• in the Command Line Client, use the --incremental option of the xdb backup command,
page 263.

Note: An incremental backup is only valid relative to the latest full backup that precedes it. If you
need to do a full backup without disturbing your current sequence of incremental backups, create a
standalone backup. A standalone backup does not affect the next incremental backup, and can be
created by running the command xdb backup with the --standalone flag. It is not possible to
create an incremental backup relative to a standalone backup.

Note: During incremental backup of a federation that includes a library with MultiPath index,
final merge logging optimization should be disabled. You can enable or disable optimization on
the federation by setting the MultiPath indexing property xdb.lucene.finalMergeNoLogging to true
(default) or false. For more information, refer to the section about MultiPath index merge, page 156.

The xdb backup command
The xdb backup command creates an online backup of a federation in a single backup file. If this
command is used on a running server, the server has to be configured for remote clients. The command
must use the xhive://host:port format for the remote bootstrap property.

EMC Documentum xDB Version 10.5 Manual 263

Administering xDB

Table 63 Options for the xdb backup command

Argument Description

-o --file ARG Specifies the output file. If no output file is specified, the output is
sent to standard output.

--incremental Creates an incremental backup.

--standalone Creates a standalone backup.

--keeplogfiles Keeps obsolete log files after completing the backup.

--include-segments

--skip-segments

Comma-separated list of either segments to be included or
segments to be skipped during backup. Segments are specified
as database:segmentID. The include and skip options are
mutually exclusive.

--include-segments-file

--skip-segments-file

Location of a file containing comma-separated list of either segments
to be included or segments to be skipped during backup. Segments
are specified as database:segmentID. The include and skip
options are mutually exclusive.

--overwrite Overwrites an existing output file.

Example

The following example creates an incremental backup and writes the output to the xdb_backup.bak file.
xdb backup --federation xhive://localhost:1235 --incremental --file xdb_backup.bak

If the amount of backup data is large, it is faster to back up from the same JVM as the page
server is using. Backing up from the same JVM avoids sending all the data over a TCP
connection. If such a backup on the server side is not practical, a possible alternative may be to
stop the page server and run a backup directly on the federation by passing the --federation
path/to/FederationFile.bootstrap option to the backup command.

The xdb restore command

The xdb restore commnand restores a federation backup from a single backup file. To restore a
full backup and corresponding incremental backups, the command must be be run for each backup
file, in the order in which the backups were created. For command options refer to table Command
line options for xdb restore command, page 264.

Table 64 Command line options for the xdb restore command

Argument Description

--federation <value> The new bootstrap file location. If no location is specified, the federation
is restored to the same location from which it was backed up, including
configuration values from the xdb.properties file.

Relative paths in the original bootstrap file are interpreted relative to the new
bootstrap file. Database files specified with absolute paths are restored to
their original location.

--file <value> The name of the input file containing the backed up data. If no input file is
specified, the input is read from standard input.

264 EMC Documentum xDB Version 10.5 Manual

Administering xDB

Argument Description

--overwrite Overwrites database files that already exist in the target federation. If not
set, restore fails if any of the database files already exists, to protect data
from accidental overwriting.

--relative-mapper Maps restored paths relative to the restored bootstrap file.

--configurable-
mapper <value>

A file that maps new restore paths to the old paths. If no path is provided an
error will be raised. For an example, see below.

Example of a configurable mapper file

<xhive-configurable-restore>
<restore-path>
<old-path>
log
</old-path>
<new-path>
C:\foo\log
</new-path>
</restore-path>
<restore-path>
<old-path>
MyDatabase-default-0.XhiveDatabase.DB
</old-path>
<new-path>
C:\foo\MyDatabase-default-0.XhiveDatabase.DB
</new-path>
</restore-path>
</xhive-configurable-restore>

Restoring lost data from log files

If the data files have been lost, the current log files are intact, and the keep-log-files option was set,
the log files can be used to restore the database.

To restore lost data from log files:

1. Move the current log files to a safe place.
2. Restore the federation, the full backup and any available incremental backups. Do not start the

server yet.
3. Check the numbers in the file names of the restored log files and the current log files. There may

be overlap, but there should be no gap. If there is a gap, either not all incremental backups were
restored or the keep-log-files option was not set at any time since the last incremental backup, and
the data cannot be restored.

4. Copy the numbered log files from the current log files to the directory with the restored log files.
Overwrite any numbered log files with identical names in the restored log file directory. Do not
copy the xhive_checkpoint.wal file. The xhive_id.wal files should be identical.

EMC Documentum xDB Version 10.5 Manual 265

Administering xDB

5. Start the server. This should use all the log files to recover the state of the federation to the most
recent one.

Related topics
The xdb restore command

Viewing backup metadata
When you create a backup, metadata about the backup is stored in a backup header. In the Admin
Client, you can use the Backup information option of the Federation menu to view this backup
information.

Backup metadata includes:

• The type of backup. Possible types are: FEDERATION, STANDALONE, INCREMENTAL, and
LIBRARY.

• A textual description of the backup, for example:
"Library backup for database db1 created at 9/23/10 4:11 PM, backup LSN= 15609. Included libraries: /library1".
• The time when the backup was created.
• Last backup LSN (Log Sequence Number).
• If it is a federation backup:

– Is it standalone, or incremental?
– Which libraries are excluded?

• If it is a library backup:

– Which libraries are included?
– Which database?

Offline backups
If no xDB code is running, a federation can be backed up and restored using any regular file backup
and restore utility. Another option is to run the xdb backup command using an in-JVM server by
specifying the federation bootstrap file as the federation.

If xDB code is running on the federation, a cold backup is not a good choice. Even if no transactions
are open, the server can still flush dirty pages from the cache to the database files during the backup,
which could result in data inconsistency in the backup files.

Related topics
Using the xdb backup command

Suspending xDB activity for snapshot backups

Federation snapshots can be created using any appropriate software or hardware method. After
creating the snapshot, any regular file backup utility or the xDB backup command can be used to
back up the federation files.

266 EMC Documentum xDB Version 10.5 Manual

Administering xDB

If the snapshot is atomic, no special measures are required. The disk image of the federation files is
always in a consistent state. If the snapshot is not atomic, all xDB write activity can be temporarily
suspended to take a consistent snapshot of the federation. For example, if several snapshots of different
file systems are required to back up a federation.

From the command line, you can use the xdb suspend-diskwrites command. This command supports
the following options:

Option Description

--flush Flushes all dirty pages in the cache to the disk.

--checkpoint Takes a lightweight checkpoint. If used together with the --flush option,
it takes a heavyweight checkpoint. If creating a backup while disk writes are
suspended, this ensures that redo recovery is not necessary after restoring
the backup.

The checkpoint option is ignored on replicators. Replicators cannot take
independent checkpoints.

--sync Flushes all files to the disk. This option is useful if you use a low level backup
mechanism that bypasses the operating system when copying the federation
files.

--resume Resumes disk writes after suspension.

Backing up and restoring a library

Detachable read-only libraries can be backed up and restored manually using the commands xdb
backup-library and xdb restore-library.

Possible uses of library backup and restore include:

• Disaster recovery, for example as protection against a library having been corrupted due to media
failure.

• Archiving, for example when a library will not be used for a long time. In such cases, after the
library is backed up, it is usually detached, and the library data files are removed from database. The
backup file can be saved in a less expensive storage.

Note: Only the database administrator can perform library backups and restores. Any attempt to
back up a non-detachable library, or a detachable library that is not read-only, causes an exception.
Libraries cannot be backed up incrementally.

By default, all files will be restored to the location that they were in when the backup was made.
Existing files will not be overwritten, unless the –overwrite option is specified. It is also possible to
restore the library to a new location on the same or a different machine.

Depending on the situation before a library backup, and the required result after restore, the restored
library may need to be attached, have its name or other properties changed, and/or have its consistency
checked.

EMC Documentum xDB Version 10.5 Manual 267

Administering xDB

Commands for backing up and restoring a library
The xdb backup-library command creates a backup from one or more read-only detachable libraries
to a single backup file or to the standard output. The library backup can be restored using the xdb
restore-library command. For more information about these commands, refer to Library-related
commands, page 255.

Example

The following examples use these commands to back up and restore a library.

xdb backup-library --file un_charter_backup.bak "/UN Charter"

xdb restore-library --federation xhive://localhost:1235 --file un_charter_backup.bak

Methods for creating and restoring backups

The xDB API backup/restore functionality discussed below includes:

• creating and restoring full and incremental backups of federations
• backing up and restoring libraries
• reading of backup metadata
• connecting to a federation backup
• serialization and deserialization of libraries and documents

Using the backup() method

The backup() method of XhiveFederationIf creates an online ("hot") backup of the federation. It
can only be called if a server is running. The xdb backup command is a simple wrapper for the
API method.

To create an incremental backup, use the backup method with the BACKUP_INCREMENTAL option.
To allow incremental backups, the keep-log-files option of the federation must be enabled before
creating the initial full backup, using the setKeepLogFiles()method of the XhiveFederationIf interface.

Example

The following example code uses the backup() method to create an online federation backup.

XhiveSessionIf session = XhiveDriverFactory.getDriver().createSession();

268 EMC Documentum xDB Version 10.5 Manual

Administering xDB

session.connect("superuser", "password", null);
XhiveFederationIf federation = session.getFederation();
FileOutputStream out = new FileOutputStream("backupfile");
federation.backup(out.getChannel(), 0);

Using the restoreFederation() method
The restoreFederation() method in the XhiveFederationFactoryIf interface can be used to restore
a federation backup.

Example

The example code below restores a federation from a backup file.
XhiveFederationFactoryIf federationFactory = XhiveDriverFactory.getFederationFactory();
FileInputStream in = new FileInputStream("backupfile");
federationFactory.restoreFederation(in.getChannel(), null, null);

Using the library backup() method
A read-only detachable library can be backed up using the backup() method of the XhiveLibraryIf
interface.

Example

The following example backs up a library.
XhiveSessionIf session = XhiveDriverFactory.getDriver().createSession();
session.connect("administrator", "password", "database");
DomLibrary lib = get a handle to the library for which to create the backup;
if (lib == null) {
// throw exception

}
FileOutputStream out = new FileOutputStream("backupfile");
lib.backup(output.getChannel());

Using the restoreLibrary() method
A detachable library can be restored from a backup file or from standard input using the
restoreLibrary() method.

Example

The following example restores a library.
XhiveFederationFactoryIf federationFactory = XhiveDriverFactory.getFederationFactory();
FileInputStream in = new FileInputStream("backupfile");

EMC Documentum xDB Version 10.5 Manual 269

Reading backup metadata

factory.restoreLibrary(input.getChannel(), "bootstrapfile", null);

Backing up and restoring multiple libraries

The following method in XhiveDatabaseIf allows you to create a backup containing multiple
detachable libraries:

void backupLibrary(Collection<XhiveLibraryIf> libraries,
WritableByteChannel out)

This method backs up the specified libraries to the file specified by out. If out is null, the backup goes
to the standard output. The specified libraries must all be detachable and read-only.

You can restore a backup containing multiple libraries using the normal restore process.

To selectively restore a library from a backup containing multiple detachable libaries, use the following
method from XhiveFederationFactoryIf:

void restoreLibrary(ReadableByteChannel in, Collection<String>
librariesToRestore, String bootstrapFilename, PathMapper mapper)

This method restores the libraries specified in librariesToRestore (each represented by a full path
string), from a backup in. If librariesToRestore is null, the method restores all the libraries in the
backup. If any specified libraries are not found in the backup, the method throws an exception.

Reading backup metadata

When you create a backup, metadata about the backup is stored in a backup header. In the Admin
Client, you can use the Backup information option of the Federation menu to view this backup
information.

You can use the XhiveBackupInfoIf interface to read this backup header. To get an
object of this type populated with the header information about a specified backup, use the
XhiveFederationFactoryIf.getBackupInfo method. You can then read the backup metadata using
the following methods of XhiveBackupInfoIf:

Table 66 API methods for reading backup metadata

Methods Description

BackupType getBackupType() Returns the backup type.

String getDescription() Returns a textual description of the backup, for example: "Library
backup for database db1 created at 9/23/10 4:11 PM, backup LSN =
15609. Included libraries: /library1".

Date getCreationTime() Returns the time of creation.

String getDatabase() Returns the database name of the libraries included in the backup.
This method is applicable only to library backups.

Collection<String> getExcludedLi-
braries()

Returns a collection of full paths of detachable libraries that are
excluded from the backup. This method is applicable only to
federation backups. In federation backup, the library full path takes
the qualified format, for example: db1:/library1.

270 EMC Documentum xDB Version 10.5 Manual

Reading backup metadata

Methods Description

Collection<String> getIncludedLi-
braries()

Returns a collection of full paths of detachable libraries that are
included in the backup. This method is applicable only to library
backups.

long getBackupLSN() Returns the backup LSN.

Connecting to a federation backup
The xDB API makes it possible to obtain an xDB driver object that operates directly on a federation
backup, without having to restore the backup beforehand. This backup driver provides a read-only
federation view on the backup data and can be used for any read-only operation such as checking the
consistency of the backup or querying the backup using XQuery.

The following types of backups are supported:

• Standalone federation backup
• Full federation backup, optionally followed by one or more incremental backups
Using a backup driver is similar to using a regular driver:
1. Obtain a backup driver by using the getBackupDriver() method of the

com.xhive.XhiveDriverFactory class:

File workDir = ...;
SeekableByteChannel full = ...;
SeekableByteChannel incremental1 = ...;
SeekableByteChannel incremental2 = ...;
XhiveDriverIf driver = XhiveDriverFactory.getBackupDriver(workDir, full, incremental1, incremental2);

The workDir argument represents a working directory that will be used for storage of temporary
data resulting from processing the transaction log files in the backup. If workDir is null, the
operating system default temporary directory will be used.
The getBackupDriver() method takes a sequence of backups; in the code example above, a full
federation backup and two incremental backups are provided.

2. Initialize and use the backup driver like a regular driver:

driver.init();
XhiveSessionIf session = driver.createSession();
session.connect(UserName, UserPassword, DatabaseName);

// perform read-only operations
...

driver.close();

try (SeekableByteChannel full = ...;
SeekableByteChannel incremental1 = ...;
SeekableByteChannel incremental2 = ...) {

XhiveDriverIf driver = XhiveDriverFactory.getBackupDriver(null, full, incremental1, incremental2);
driver.init();

EMC Documentum xDB Version 10.5 Manual 271

Reading backup metadata

XhiveSessionIf session = driver.createSession();
session.connect(userName, userPassword, databaseName);
session.begin();

// perform read-only operations
...

session.commit();

driver.close();
}

API documentation
com.xhive.XhiveDriverFactory

com.xhive.core.interfaces.XhiveDriverIf

com.xhive.core.interfaces.XhiveSessionIf

Serialization and deserialization of libraries and documents

Serialization and deserialization can be done using the Admin Client or the following API calls:

• XhiveLibraryChildIf.serialize(OutputStream out) - Serializes a library child to an output stream.
• XhiveLibraryIf.deserialize(InputStream in) - Deserializes a library child, changing it to a child
of the calling library.

• XhiveDatabaseIf.deserializeRootLibrary(InputStream in) - Deserializes a library, changing it to
the root library of the calling database.

For more information about these methods, see the API documentation.

Managing detachable libraries
A library can be detached from the database by calling the XhiveLibraryIf.detach() method. When a
library is detached from a database, the library is logically removed from the database and becomes
non-accessible until it is attached. Once detached, a library may be physically removed from the
database or moved into a different storage.

Creating a detachable library requires calling the XhiveLibraryIf.createLibrary(int options, String
segmentId) method with the XhiveLibaryIf.DETACHABLE_LIBRARY option flag. When this flag
is set, a segment ID must also be specified. Moreover, the segment must already exist, and cannot
have been used previously by any other library, even if that previous library has been deleted. Once
used for a detachable library, a segment can be used for that library only. A used segment cannot be
shared with other detachable libraries.

There are several basic methods for managing detachable libraries, as described in the table API
methods for managing detachable libraries, page 272.
Table 67 API methods for managing detachable libraries in XhiveLibraryIf

Methods Description

isDetachable() Identifies whether a library is detachable.

272 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/XhiveDriverFactory.html
./../apidocs/com/xhive/core/interfaces/XhiveDriverIf.html
./../apidocs/com/xhive/core/interfaces/XhiveSessionIf.html

Reading backup metadata

Methods Description

detach(String) Detaches a library if it is detachable. The library is logically removed
from the database once it is detached.

attach(String) Attaches a detached library to the original database from which it
was detached. When a detached library is attached to the original
database, it can be attached to the original location or moved to a
different location.

forceDetachChild(String) Forcibly detaches a child library. This method is designed to be used
only when the child library (and/or any descendants of this child
library) is believed to be corrupted.

forceAttach(String) Attaches a library which is previously detached through
forceDetachChild(String) or has one or more currently unusable
segments back into the database from detached state.

getState() Identifies the state of a library.

setState(LibraryState) Changes the state of a library. Changing the state of a detachable
library to read-only also changes the state all library children to
read-only. Changing the state of a detachable library to read-write
causes an exception if any of its ancestors is in a read-only state.

getAllSegmentIds() Gets the ids of all the segments occupied by a detachable library.

getBindingNodes(boolean) Gets the names of all the binding nodes of a detachable library.

addBinding(String) Binds a read-only detachable library and all its descendant libraries to
the specified node in addition to all its existing bindings.

remove(String) Removes the specified node as one of the binding nodes of a read-only
detachable library and all its descendant libraries.

changeBinding(String) Binds a detachable library and all its descendant libraries to the
specified node.

backup(WritableByteChannel) Creates a backup of a read-only detachable library.

getNonSearchable() Identifies whether a library is searchable.

setNonSearchable(boolean) Changes a searchable library to a non-searchable library.

Sample

DetachLibrary.java

Related links

Using the library backup() method

Using the restoreLibrary() method

API documentation

com.xhive.dom.interfaces.XhiveLibraryIf

EMC Documentum xDB Version 10.5 Manual 273

./../../src/samples/manual/DetachLibrary.java
./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html

Reading backup metadata

Moving a detachable library

A detachable library can be moved from one database to another provided both databases belong to
the same federation. This is accomplished by first detaching the library from its current database and
then attaching it to its new database.

To move a detachable library programmatically, use the regular XhiveLibraryIf.detach() call to do
the detach step first (note that this is done in a session connected to the source database):

lib.setState(LibraryState.READ_ONLY, true);
lib.detach()

Once the library is successfully detached, use the special XhiveLibraryIf.attach(String, String,
String, XhiveFederationFactoryIf.SegmentIdMapper) call in another session which is connected to
the destination database to actually move the library:

session2.connect(administratorName2, administratorPassword2, databaseName2);

// begin the 2nd database admin transaction
session2.begin();
XhiveLibraryIf root2 = session2.getDatabase().getRoot();

// create a simple segment id mapper (optional)
XhiveFederationFactoryIf.SegmentIdMapper mapper =
new XhiveFederationFactoryIf.SegmentIdMapper() {
@Override
public String getSegmentId(String originalSegmentId) {
return originalSegmentId + "_2";

}
};

// move the library from the 1st database to the 2nd database
root2.appendChild(root2.attach(databaseName1,

administratorPassword1, segmentId, mapper));

session2.commit();

This special attach API is different from the regular XhiveLibraryIf.attach(String) API as it needs
to access the data of a different database. As a result, the caller at the same time has to be the
administrator of the source database and provides the administrator credential in the API call.

The segments of the library are moved into the destination database together with the library. The
ID of a segment is unique only within the database in which it was originally created, so there
may be an ID collision when moving a segment to another database. Should it be necessary, an
XhiveFederationFactoryIf.SegmentIdMapper object can be specified to rename the IDs of the
segments in the destination database.

The data files of the segments are also moved, logically. Since xDB adopts a naming convention
which combines database name, segment ID and file ID for all its data files, the moved data files will
violate this convention after the move. xDB will attempt to rename them under certain conditions or
the next time server restarts.

Sample

MoveLibrary.java

274 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/MoveLibrary.java

Reading backup metadata

API documentation
com.xhive.dom.interfaces.XhiveLibraryIf

com.xhive.core.interfaces.XhiveFederationFactoryIf.SegmentIdMapper

Unusable detachable libraries
If a detachable library is found to be corrupted for any reason (such as a media failure), the library
and its descendant libraries can be marked as unusable by setting a Boolean usable property to false.
Any library marked as unusable will be skipped during query and search processing. The usable
property is applicable to detachable libraries only; an attempt to set the property on a non-detachable
library will cause an exception. Further, a detachable library can be set to unusable only if it is a
child of a concurrent library.

You can check whether a library is corrupt by performing a consistency check on it, and then set the
library to unusable or usable accordingly. The database administrator should run consistency checker
before creating a backup as well as after a backup has been restored.

You can detect a corrupted library at runtime by catching an XhiveDataCorruptionException (which
extends XhiveException).

There are several methods for managing detachable library usability, as described in the table below:
Table 68 API methods for managing detachable library usability in XhiveDatabaseIf

Method Description

setLibraryUsableBySegmentId(String
segId, boolean usable)

Mark the detachable library whose root page is on the specified
segment as usable if usable is true, unusable otherwise.

setLibraryUsableByPageId(long pageId,
boolean usable)

Mark the detachable library that contains the specified page as
usable if usable is true, unusable otherwise.

setLibraryUsableByPath(String fullPath,
boolean usable)

Mark a detachable library, which is specified by the full path, as
usable if usable is true, unusable otherwise.

getAllUnusableLibraries() Return a collection of strings representing the full paths of all
unusable libraries in the specified database.

getAllUnusableExternalIndexes() Return all unusable MultiPath indexes in the database.

In addition, the XhiveFederationFactoryIf interface exposes the following method:

getAllUnusableLibraries(String bootstrapFile, String database)

which returns a collection of strings representing the full paths of all unusable libraries in the specified
database.

An unusable library will be skipped when a query is executed against the library or any of its ancestors.
The library.getChildren() method will exclude any unusable children in its result.

Duplicated transaction log files
To provide additional protection for the transaction logs, xDB can be set up to automatically maintain
one or more duplicates of a server node’s transaction log files in separate locations. The original log
location is called the primary log directory, and the duplicates are called secondary log directories. Each

EMC Documentum xDB Version 10.5 Manual 275

./../apidocs/com/xhive/dom/interfaces/XhiveLibraryIf.html
./../apidocs/com/xhive/core/interfaces/XhiveFederationFactoryIf.SegmentIdMapper.html

Reading backup metadata

server node always has one single primary log directory, and one or more secondary log directories can
be added. Secondary log directories can be removed; the primary log directory cannot be removed.

For performance reasons, it is preferable to have each transaction log location on a separate disk.
However, even if all duplicates are on the same disk, increased redundancy can still help protect the
transaction logs against the consequences of I/O errors, file corruption, and so on.

Note: When keeping duplicates of transaction log files, xDB concurrently writes the same information
to multiple identical log files. Duplicating transaction log files therefore increases the amount of
I/O that the page server must perform. Depending on your configuration, this may impact overall
performance.

To recover from a failure on the primary log directory, first shut down the page server, then copy
the duplicate log files from a secondary log directory to the primary log directory, and then restart
the page server.

xDB writes to the available secondary log directories while ignoring any unusable ones. If xDB
cannot write to a secondary log directory, it marks that log directory as "unusable" in the bootstrap
file and places an error message in the message log. Writing to the primary log directory and any
other secundary log directories proceeds normally.

Log directories can be added or removed using command line client commands, page 248.

Methods for transaction log duplication

You can create a federation with multiple log directories, and/or add a log directory to an existing
node, as follows:

1. Create an XhiveLogConfigurationIf object:

XhiveFederationFactoryIf ff = XhiveDriverFactory.getFederationFactory();
XhiveLogConfigurationIf logConfig =

ff.createLogConfiguration(PRIMARY_LOG_DIR, SECONDARY_LOG_DIRS_LIST);

2. Use the object to create a federation.

ff.createFederationWithLogConfig(BOOTSTRAP, logConfig,
PAGE_SIZE, SUPERPWD);

3. Or, to add a new node:

XhiveSessionIf session = driver.createSession();
session.connect(SUPERUSER, SUPERPWD, null);
session.begin();
XhiveFederationIf federation = session.getFederation();
federation.addNodeWithLogConfig(nodeName,

276 EMC Documentum xDB Version 10.5 Manual

Reading backup metadata

hostName, portNum, logConfig);
session.commit();

Modify the log directories configuration of an existing node:

1. Retrieve the XhiveLogConfigurationIf object of the node:

XhiveSessionIf session = driver.createSession();
session.connect(SUPERUSER, SUPERPWD, null);
session.begin();
XhiveFederationIf federation = session.getFederation();
XhiveLogConfigurationIf logConfig =

federation.getNodeLogConfiguration(NODE_NAME);

2. Add (or remove) a log directory:

logConfig.addLogDirectory("sLog1");

Monitoring statistics
xDB implements extensive monitoring capabilities, which can be used to analyze various aspects
of xDB performance.

xDB monitors statistics separately for each server, which allows for better understanding of each
server’s load.

xDB supports monitoring of various statistics categories, page 279, including number of cache hits,
page access, query response time, number of connected transactions and transaction rollback time.
Monitoring can be enabled and disabled for various categories, either on a system or on transaction
level.

By default, monitoring is disabled. It can be enabled or disabled through the property
XHIVE_STATISTICS_MONITORING_ENABLED in the xdb.properties file, which is set to false
by default.

If you set this property to true and then run an xDB server, then monitoring will be enabled for that
server.

With statisics monitoring enabled, you can use the Command Line Client commandmonitor-statistics
with the following arguments:

• path: The connection URL to the local JMX server (required).
• password: The password to the local JMX server (required).
• username: The username to the local JMX server (required).
• duration: The amount of time (in seconds) we monitor, infinite if empty.
• interval: Statistic data polling intervals (in seconds). Defaults to
XHIVE_STATS_MONITOR_INTERVAL.

EMC Documentum xDB Version 10.5 Manual 277

Reading backup metadata

• nodename: The server node to monitor (required).
• federation: The federation to monitor (required).
• category: The category to monitor. If left empty, all categories are monitored. Available category
options are: xdb, server, transaction, session, replicator, query, bufferpool, page.

Enabling statistics monitoring
By default, statistics monitoring is disabled. You can enable/disable monitoring either though:

• a Superuser/Administrator session If the session is connected as an Administrator/Superuser, it can
enable the categories using the XhiveSessionIf.enableStatistics(String category, boolean enable)
call. Categories enabled/disabled by this session will be so for the entire server. The category
provided can also be a prefix of several other categories and this call will enable/disable all of them.

• a user session If the session is connected as a regular user (not an Administrator/Superuser), it can
enable the categories using the same method call as above. However, it can only enable transaction
level statistics, which will only be monitored for the current transaction.

Consuming monitored xDB statistics
xDB monitored statistics can be consumed in several ways (please make sure that the statistics you
wish to consume are enabled on the relevant driver):

• Through the API: You can consume the monitored statistics of an XhiveDriverM by using the
following API call XhiveDriverIf.getStatisticsSubscription(String... categories) which returns an
instance of XhiveStatisticsSubscriptionIf which corresponds to the provided categories. You can
use this instance to call XhiveStatisticsSubscriptionIf.getSnapshot() which returns an instance of
XhiveStatisticsSnapshotIf which represents the values of the monitored statistics at the time of
the snapshot. Each XhiveStatisticsSnapshotIf has two getters: getTimeStamp() which tell you
when the snapshot was taken and getData() which represents a map of the values of the monitored
statistics at the time they were taken. Each key represents the name of the monitored category and
each value represents an XhiveStatisticValueIf which can be different things depending on its type.

The example code below shows how to subscribe to and receive monitored buffer pool cache statistics:

XhiveStatisticsSubscriptionIf subscriber =
getDriver().getStatisticsSubscription("xdb.bufferpool");

XhiveStatisticsSnapshotIf snapshot = subscriber.getSnapshot();
Map<String, XhiveStatisticValueIf> data = snapshot.getData();
for(String category : data.keySet()) {
System.out.println(snapshot.getTimeStamp() + ": " + category + "="+
data.get(category).toString());
}

• Through JMX: Each driver publishes an instance of XhiveStatisticsMonitoringMBean to the
default platform JMX server. You can connect to this server via a JMX client and invoke the
bean’s snapshot(String[] categories) method. It will return an XhiveStatisticsSnapshotIf which
corresponds to the XhiveDriver that published that bean.

278 EMC Documentum xDB Version 10.5 Manual

Reading backup metadata

Monitored statistics categories
Note: Monitored statistics categories are subject to change.

Currently, the following categories can be monitored:

• Server:

– xdb.system.receivers: The number of receivers in a server.
– xdb.system.replicaids: The replica IDs of the server.

• Session:

– xdb.system.checkpoints: The number of checkpoints performed.
– xdb.system.commits: The number of commits performed.
– xdb.system.rollbacks: The number of rollbacks performed.
– xdb.system.sessions: The number of connected sessions.
– xdb.system.transactions: The number of active transactions.
– xdb.system.blockedtransaction: The number of blocked transactions.
– xdb.system.deadlocks: The number of deadlocks.

• Transaction:

– xdb.transaction.user: The connected user of the transaction.
– xdb.transaction.database: The database the transaction is connected to.
– xdb.transaction.address: The address the transaction is connected to.
– xdb.transaction.node: The node the transaction is connected to.
– xdb.transaction.state: The state of the transaction.
– xdb.transaction.readonly: Whether the transaction is read only.
– xdb.transaction.system: Whether the transaction is a system transaction.
– xdb.transaction.start: The time when the transaction started.
– xdb.transaction.end: The time when the transaction ended.
– xdb.transaction.id: The ID of the transaction.
– xdb.transaction.joinedthread: The name of thread joined to the transaction.
– xdb.transaction.rollbacktime: The time it took to rollback the transaction.
– xdb.transaction.committime: The time it took to commit the transaction.

• Replicator:

– xdb.replicator.system.lastreceivedlsn: The last LSN received by the replica.
– xdb.replicator.system.lastredonelsn: The last LSN redone by the replica.
– xdb.replicator.system.masteraddress: The replica master’s address.

• XQuery:

– xdb.xquery.transaction.debug.optimizer: Represent the ’optimizer-debug’ output.

EMC Documentum xDB Version 10.5 Manual 279

Reading backup metadata

– xdb.xquery.transaction.debug.queryplan: Represent the transactional ’queryplan-debug’
output.

– xdb.xquery.transaction.debug.index: Represent the ’index-debug’ output.
– xdb.xquery.transaction.debug.pathexpression: Represent the ’pathexpr-debug’ output.
– xdb.xquery.transaction.debug.query: The query text.
– xdb.xquery.transaction.indexesused: The indexes used in this query.
– xdb.xquery.transaction.start: When the query started (when execute is called).
– xdb.xquery.transaction.timetofirstresult: The time it took to return the first result to this query.

• Buffer Pool:

– xdb.bufferpool.transaction.hits: The number of cache hits per transaction.
– xdb.bufferpool.transaction.misses: The number of cache misses per transaction.
– xdb.bufferpool.system.hits: The number of overall cache hits.
– xdb.bufferpool.system.misses: The number of overall cache misses.
– xdb.bufferpool.system.size: The size of the cache.

• Page:

– For each page type, you can monitor the following statistics:

♦ xdb.page.system.{page type}.accessThe number of overall accesses per page type.
♦ xdb.page.system.{page type}.readThe number of overall bytes read per page type.
♦ xdb.page.system.{page type}.writtenThe number of overall bytes written per page type.
♦ xdb.page.system.{page type}.readtimeThe overall time spent reading per page type.
♦ xdb.page.system.{page type}.writetimeThe overall time spent writting per page type.
♦ xdb.page.transaction.{page type}.accessThe number of accesses per page type per
transaction.

♦ xdb.page.transaction.{page type}.readThe number of bytes read per page type per transaction.
♦ xdb.page.transaction.{page type}.readtimeThe time spent reading per page type per
transaction.

– The page types are:

♦ superblock
♦ other
♦ temporary
♦ objectowner
♦ objects
♦ indexleaf
♦ indexinternal
♦ bigstring
♦ blobleaf
♦ blobinternal
♦ concurrent.root

280 EMC Documentum xDB Version 10.5 Manual

RAM segments

♦ concurrent.internal
♦ concurrent.leaf
♦ namebase.root
♦ namebase.internal
♦ namebase.leaf

They and their combined prefixes are accepted.

RAM segments
A RAM segment is a special type of database segment that is kept in the database cache but never
written to a file.

Note: The size of the database cache limits the amount of data that can be kept in a RAM segment.
Furthermore, if too large a part of the cache is used to store temporary data, database performance can
suffer due to lack of cache pages for other usages

In the Admin Client, a RAM segment for temporary data can be enabled in the Database properties
dialog, by selecting the option ram_segment from the Temporary data segment dropdown list.

Read-only federations
If your xDB application requires that data remains unchanged, you can put that data in a read-only
federation. For example, this can be useful for distribution on readonly media like CDROM. To
facilitate such usage, xDB has some special features for readonly federations.

A federation can be changed into a read-only federation by changing the bootstrap file to a read-only
file.

A read-only federation has the following characteristics:

• It requires no log files. For example, copying a federation to a CD-ROM only requires copying the
bootstrap file and database files. The log files are not required. A federation can only be copied
when the xDB server is not running and has been shut down cleanly. A clean shutdown allows the
server to write all modified pages back to disk and the log files are not needed on startup.

• Its bootstrap file is not locked. Multiple xDB applications can be run using the same read-only
federation.

• Its data cannot be modified.

Note: A read-only federation, though the data itself cannot be modified, can still allow for creation of
temporary data by using a RAM segment.

Federation sets
A federation set provides a convenient way to run multiple federations in a single server with a single
TCP port and a single page cache.

EMC Documentum xDB Version 10.5 Manual 281

RAM segments

A federation set is defined by a federation set description file, which is simple XML file that contains
a list of references to federations. Federation sets can be nested: a federation set description can
reference other federation set description files. The example below contains absolute references to two
federations and one relative reference to a (nested) federation set description file. Any relative paths to
federations or nested federation sets are interpreted relative to the federation set description file.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:federation-set xmlns:ns2="http://www.xhive.com/federationset/schema">

<federation-list>
<federation file="D:/xDB10/data1/XhiveDatabase.bootstrap" name="UN1"/>
<federation file="C:/xDB10/data2/XhiveDatabase.bootstrap" name="UN2"/>

</federation-list>
<nested-federation-set-list>

<nested-federation-set file="../XhiveDatabase.fds" name="nest1"/>
</nested-federation-set-list>

</ns2:federation-set>

A federation referenced in a federation set description file does not have to exist. Adding a federation
to a federation set and creating that federation are separate and unrelated actions.

Creating a federation set

There are several ways to create a federation set description file and add federations:

• Using the xdb federation-set command, for example:

xdb federation-set create filename
xdb federation-set addfd filename --name

fdname --value /path/to/bootstrapfile

• Using the administration client and clicking Federation sets > Create federation set and entering
the file name for the new federation set description file. After creating the federation set description
file, theModify federation set option can be used to add federations.

Using federation sets

A federation set can run on a separate server or in the application JVM. The latter option is more
efficient. A federation set server can be started by running the xdb run-server command with the
--federationset option instead of the --federation option.
The following example runs a separate federation server.
xdb run-server --federationset /path/to/federationset --port 1235 --cache 4096

282 EMC Documentum xDB Version 10.5 Manual

RAM segments

Using Secure Sockets Layer (SSL)
For maximum security, xDB can run over an SSL connection. The Secure Sockets Layer (SSL)
protocol can be used by web servers and web browsers for encrypted communications. SSL uses
cryptographic processes to provide secure communication over a network.

Note: Encryption can have a severe performance impact.

Using SSL requires setting up a keystore and a truststore using JSSE administration and the keytool
command.

Configuring the server for SSL

Configuring the server for SSL includes:

• Creating an SSL server socket by running the xdb run-server command with the –ssl option. Using
the –clientauth option enables client authentication.

• Specifying system properties for the default keystore using the
-Djavax.net.ssl.keyStore=/path/to/keystore Java command line parameter.

Configuring the client for SSL

Configuring SSL on the client includes specifying a URL as the xhive.bootstrap property. The URL
has the format xhives://host:port. The system uses the default SSLSocketFactory to connect to the
xDB server. It can require setting the JSSE system properties.

Checking database consistency
It can be useful to perform consistency checks, either before and/or after major events (for example
before a full backup and after a restore), or on a regular basis.

Note: Use consistency checking only while there are no active updating transactions, otherwise the
result of the consistency check is not defined.

The Admin Client and the command line client offer options to check the consistency of a database,
federation, library, document or BLOB.

Table 69 Consistency checkers

Admin Client options CLC commands

Main menu:
Federation > Check federation consistency

check-federation

Database right-click menu:
Check database consistency

check-database

EMC Documentum xDB Version 10.5 Manual 283

RAM segments

Admin Client options CLC commands

Library right-click menu:
Library mangement > Check library consistency

check-librarychild

XML document/BLOB right-click menu:
Check document consistency
Check blob consistency check-node

In addition to checking consistency of a “live” federation, the command-line client commands
check-federation, check-database, check-library-child, and check-node support also checking
consistency of federation backups.

Example federation consistency check result in the Admin Client

Select one or more check options, then click the Check button.

When the check is complete, you can select text in the Consistency checker report and copy the
selection to the clipboard.

Methods for consistency checking
The XhiveConsistencyCheckerIf/XhiveFederationConsistencyCheckerIf APIs provide consistency
checkers, respectively for a library, database or a federation.

Note: The consistency checker can only be used when there are no active updating transactions,
otherwise the result of the consistency check is not defined.

To check database consistency using the API:

284 EMC Documentum xDB Version 10.5 Manual

RAM segments

1. Start a session and connect to the database as administrator.

When calling the connect() method, the databaseName parameter value is null.

XhiveDriverIf driver = XhiveDriverFactory.getDriver();
if (!driver.isInitialized()) {
driver.init(1024);

}
XhiveSessionIf session = driver.createSession();
session.connect(AdminName, AdminPassword, databaseName);

XhiveDatabaseIf database = session.getDatabase();

2. Get a consistency checker interface.

XhiveConsistencyCheckerIf checker = database.getConsistencyChecker();

3. Create a PrintWriter object that contains the consistency checker report, similar to the following:

ByteArrayOutputStream baos = new ByteArrayOutputStream();
PrintWriter pw = new PrintWriter(baos);
checker.setPrintWriter(pw);

4. Check and report database consistency, similar to the following:

if (checker.checkDatabaseConsistency()) {
System.out.println("Database: " + database.getName() + " is consistent");

} else {
pw.flush();
System.out.println(baos.toString());

}

Checking federation consistency

Given an active session, the code sample below shows how to check a federation.
XhiveFederationIf fed = session.getFederation();
XhiveFederationConsistencyCheckerIf checker = fed.getConsistencyChecker();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
PrintWriter pw = new PrintWriter(baos);
checker.setPrintWriter(pw);
if (checker.checkFederationConsistency().isConsistent()) {
System.out.println("Federation at driver: " +

session.getDriver().getFederationBootFileName() + " is consistent");
} else {
pw.flush();
System.out.println(baos.toString());

}

EMC Documentum xDB Version 10.5 Manual 285

RAM segments

Message logging
Message logging provides run-time status information in a human-readable form, and is unrelated to
write ahead logging, page 43. This section applies to the java.util.logging logging back-end, which
is the default xDB message logging implementation. For more information about Java’s logging
system, refer to the Javadoc documentation for the class java.util.logging.LogManager, or the
documentation of your JVM. Note: To facilitate adaptation to environments that depend on specific
logging frameworks or configurations, xDB uses SLF4J as message logging framework. For more
information about SLF4J, refer to Message logging framework, page 287. If you want to use xDB with
a different logging implementation, refer to that implementation’s documentation.

The java.util.logging functionality relies on the global logging configuration for the JVM in which
it runs. By default, log messages with a priority of INFO or higher are written to the console.
Java’s logging system is typically configured through configuration files, either a default one
per JVM in JAVA_HOME/lib/logging.properties, or a file specified with the system property
java.util.logging.config.file, for example on the Java command line. For the xDB
standalone server, you can configure this in the additional Java VM option XHIVE_OPTS in
xdb.properties, or in the lax configuration file (see Configuration files for Windows, page 68).

For example, you can enable logging for the xdb command, by adding
-Djava.util.logging.config.file=[logging.properties] to JAVA_CMD.

Under Windows in xdb.bat:
"!JAVA_CMD!" -Xms!XHIVE_MIN_MEMORY! -Xmx!XHIVE_MAX_MEMORY! !XHIVE_OPTS! \

-Djava.util.logging.properties.file=mylogging.properties \
-cp "!XHIVE_CLASSPATH!" com.xhive.tools.Cmd %*

Under UNIX in xdb.sh:
"${JAVA_CMD}" -Xms${XHIVE_MIN_MEMORY:-128M} -Xmx${XHIVE_MAX_MEMORY:-256M} \

${XHIVE_OPTS} \
-Djava.util.logging.properties.file=mylogging.properties \
-cp "${CLASSPATH}" com.xhive.tools.Cmd "${@}"

You can configure multiple handlers to receive logging information (for example, to write log
messages to a file and to send them by email). You can set log levels for individual logging areas,
identified by a hierarchical package name. Logging areas are hierarchical package names, separated by
’.’. Areas cascade: setting a log level on com.xhive will apply to all sub-packages, unless they have
their own log level specified.

The example below configures a console handler, and specifies different logging levels for several
logging areas.
specify a set of handlers, in this case just a console handler
handlers = java.util.logging.ConsoleHandler
log level for a particular handler
java.util.logging.ConsoleHandler.level = INFO
log level for xDB core messages
com.xhive.core.level = FINE
less information from multi path indexes
com.xhive.index.multipath.level = SEVERE

286 EMC Documentum xDB Version 10.5 Manual

RAM segments

Message logging areas

xDB’s message logging areas include:

• com.xhive.core - messages from the database kernel, typically about critical failures of core
database processes. Do not set the log level above SEVERE for this logger.

• com.xhive.index.multipath.indexing - messages concerning the administration and indexing
process of multi path indexes.

• com.xhive.index.multipath.query - messages about queries against multi path indexes.
• com.xhive.index.multipath.merging - messages about merging activities in multi path indexes.
• com.xhive.trace.rpc - trace messages about RPC operation in client/server mode, typically on level
FINEST. For more information, refer to RPC tracing, page 78.Note: Enabling these can have an
adverse performance impact.

Message logging framework

xDB uses SLF4J (see www.slf4j.org) as message logging framework (with the exception of the xDB
Ant tasks, which use Ant’s built-in logging system).

SLF4J is a facade for Java logging frameworks such as java.util.logging, Log4J, logback and
commons-logging. SLF4J decouples the logging API from the actual logging implementation, making
it is possible to plug in a different logging implementation at deployment time, without having to
modify the application code. This makes it easy to adapt xDB to environments that depend on specific
logging frameworks or configurations.

The logging in SLF4J is configured through the underlying logging implementation. How this is
done depends on the specific logging framework.

The xDB distribution uses java.util.logging as the default logging implementation. To use a different
logging framework, remove the lib/xhivedb/core/slf4j-jdk14.jar SLF4J binding library from the Java
classpath and substitute it with the desired SLF4J binding library.

EMC Documentum xDB Version 10.5 Manual 287

http://www.slf4j.org/

Chapter 14

Replicating Federations

This chapter contains the following topics:

• Replication
• Creating a federation replica
• Running a replicator on a dedicated server
• Replication of federation metadata
• Changing a replica into a master
• Removing a replica
• Methods for replication

Replication

Load sharing by spreading database reads over multiple page servers can provide a large performance
advantage. xDB supports this by means of lazy primary copy replication.

With xDB, replication involves maintaining one or more full copies of a federation, with each copy
having a separate page server. One page server maintains a “master” copy of the data, while one or
more additional page servers each maintain a read-only “slave” copy of the data.

Primary copy replication means that data updates occur on a master federation, known as the primary
or the primary copy. Applications write data only to the primary. The updates propagate from
the master to one or more read-only copies of the primary, known as replicas, secondary copies, or
slaves. One primary can have multiple replicas. For each replica, there is a separate, dedicated page
server called a replicator or replication server. A replicator can act as master for another replica.
Applications can perform read-only transactions and online backups on the replicas instead of on
the primary, to distribute query load and improve performance. Also, applications can provide for
using a replica as a failover.

The term lazy indicates that the master does not wait for a transaction to propagate to the replicas
before confirming the transaction. The replicas are updated asynchronously in the background.

The replication process sends the master’s primary transaction log files to the replicators. The
replicators read the log files and apply all updates to their own copy of the data. The master preserves
any required log files until the replica has confirmed that it received the files.

EMC Documentum xDB Version 10.5 Manual 289

Replicating Federations

Primary with two replicas

Creating a federation replica
To create a replica from a federation, its replicator must be given a name that is registered with the
master. This tells the master that a replica will be added, and will make the master preserve any
required transaction log files until that replica confirms that it received the log files.

To register a replicator manually, you can use the Admin Client.

After registering the replicator, you can create a copy of the federation in one of the following ways:

• Use the xdb create-replica command from the primary federation. If desired, the replicated
federation can then be moved to another machine. Alternatively, you can run the command on the
destination machine, connecting to the original server remotely, like this:

xdb create-replica --federation xhive://masterhost:1235
--replicaid newOrExistingReplicaId
--replicabootstrappath /path/to/new/replicadata/XhiveDatabase.bootstrap
--password superuserpassword

The example above assumes that the master server is running a page server that is accessible from
other hosts, and that the replica host has xDB installed.

• Use Replicate federation option of the Admin Client.
• Use the xdb backup command or the Admin Client to create a full online backup, and restore

that backup on the desired machine.

290 EMC Documentum xDB Version 10.5 Manual

Replicating Federations

• If no server is running for the federation, you can copy all the federation files to another machine
using a system file copy command.

Note: Do not make a system file copy while a server is running for the original federation, because
that will corrupt the data in the replica.

First registering a replicator name with the master and then creating the copy of the federation implies
this replicator name is also registered with the copy. The replicator server preserves its log records for
another replicator with this name, unless the name is unregistered from the copy.

To unregister a replicator name with a copy, use the Admin Client or the xdb create-replica command
with –remove option.

Running a replicator on a dedicated server
To run a dedicated page server as a replicator, duplicating all updates from the master, use the xdb
run-server command with the following options to provide the master location and the registered
name of the replicator:

• --master xhive://host:port
This option passes the location of the master page server. The connection uses the same port as
regular client connections. Specifying an https protocol identifier creates an SSL connection to
the master.

• --replicator replicatorId
This option passes the replicator name. The replicator name must be registered with the master.

Clients can connect to the replicator server for read-only queries and online backups.

Replication of federation metadata
Federation metadata is stored in the federation bootstrap file. Not all this data is replicated, because it
can be necessary to use different settings at the different copies of the federation.

The following federation metadata is replicated:

• Superuser password, license key
This type of metadata can only be updated at the master and is replicated to the secondary copies
automatically.

• Databases, segments, and files
By default, the replica uses the same path to the file as the original. Relative paths are always
interpreted relative to the bootstrap file. If different paths are required for the secondary copies,
it is usually easiest to use symbolic links those paths to point to the desired actual directories,
provided your system supports symbolic links. Otherwise, a path mapper can be used. For more
information, see the API documentation.

The following federation data is not replicated:

EMC Documentum xDB Version 10.5 Manual 291

Replicating Federations

• Updates to the keep-log-files option

This option can be set independently at the master and the replicas. This method is useful if only
one of them is used to create incremental backups. In that case, the update option is set to true only
for the copy that is used for incremental backups.

• Registering and unregistering of replicators

This type of metadata can be stored in any copy and is not replicated. For example, registering
replicator X at replicator Y causes replicator Y to retain the log records. The records are retained
until the registered replicator X has confirmed that the master has received the logs.

Changing a replica into a master
Moving the role of master copy to one of the replicas is useful if the master server is taken out
of service.

To turn a replica into a master, the master must be synchronized with the replica by shutting down the
master copy and specifying the replica as new master.

The master copy can be shut down manually using the Admin Client or the xdb stop-server command.
By default, the master is synchronised with all registered replicators. If the --wait option is used,
the master is synchronised with the listed replicators only. After the old and new master have been
synchronized, a regular master server can be run on the new master.

Example

The example below uses the xdb stop-server command to shut down a server, after updating
its two replicas.

xdb stop-server --federation xhive://dbserver:1235 --wait "id1, id2"
superuserpwd

Passing an empty string as --wait option instructs the process not to wait for any replicators:

xdb stop-server --federation xhive://dbserver:1235 --wait ""
superuserpwd

Removing a replica
A replica is removed by stopping the replication server and removing the files.

Subsequently, the replicator must be unregistered from the master, so the master does not preserve the
log records for this replica. Otherwise the master preserves obsolete log files forever. A replicator
can be unregistered manually using the Admin Client or the xdb create-replica command with
–remove option.

292 EMC Documentum xDB Version 10.5 Manual

Methods for replication

Methods for replication
Methods for using a federation replica
To create a replica from a federation, its replicator must be given a name that is registered with
the master to inform the master that a replica is added. The registerReplicator method of the
XhiveFederationIf interface registers a replicator.

After registering the replicator, you can create a copy of the federation using one of the following
methods:

• Create a copy of an online federation directly, using the XhiveFederationIf.replicateFully API.
• Create a full online backup, using the XhiveFederationIf.backup API, and restore the backup

on the machine that will host the replicator.

Use the XhiveFederationIf.unregisterReplicator method to unregister a replicator.

If the XhiveFederationIf.shutdown method is used to shut down a master copy, it will wait until all
specified replicators are completely up to date with this server. If necessary, it will also wait for
replicators to connect.

Running a replicator on an internal server
If a replicator is used for queries, it is more efficient to use an internal server. An internal replicator
server is started using the API. Internal replicator sessions are created like other sessions, except that
internal replicator sessions can only perform read-only transactions.

Example

The following example starts an internal replicator server.
XhiveDriverIf driver = XhiveDriverFactory.getDriver("/xhive/replica/
XhiveDatabase.bootstrap");
driver.configureReplicator("xhive://masterhost:1234", "myReplicator");
driver.init(1024);

Read-only transactions with temporary data
Read-only transactions can still create temporary data, such as new nodes in XQuery queries or old
versions of versioned documents. The replication mechanism updates all data in normal segments, so
the replica cannot allocate temporary data to normal segments.

Therefore, to use temporary data in the replica, you must create a temporary data segment in the replica
and use that segment for its temporary data. Updates for temporary data at the master are not logged,
and therefore not replicated, which means that the replicator can safely use its own temporary data
segment for its own temporary data.

Note: Instead of a file, you can allocate a RAM segment for temporary data by using the
setTemporaryDataSegment method with the special value RAM_SEGMENT_NAME. However,
a RAM segment is useful only if there are enough cache pages to hold the temporary data of all
simultaneous sessions, with some cache space to spare for other usages.

EMC Documentum xDB Version 10.5 Manual 293

Methods for replication

Using a replica as a failover
If the master copy fails for any reason, one of the replicas can take over the role of the master. xDB
does not provide tools to detect failure, because an xDB tool is useless for an application server
with an internal xDB server. Failure detection has to include the entire application and initiate the
failover process.

If there is only one replica, it can become the master by stopping the replicator and starting a dedicated
or internal xDB server. The following example describes using the API.
driver.close();
driver.configureReplicator(null, null);
driver.init(cachePages);

The new master automatically performs any necessary log record updates that were already transferred
and rolls back any updates of uncommitted transactions.

For xDB 7.3 versions and later, it is also possible to turn a replicator into a master server without
stopping the server. Running read-only transactions can continue normally. Use the administration
client or the API, as described in the following example.
XhiveSessionIf session = driver.createSession("make master");
session.connect("superuser", password, null);
XhiveFederationIf federation = session.getFederation();
federation.turnReplicatorIntoMaster();

If there are any other replicators, they must be stopped and restarted with the URL of the new master
server. The replicators must have been registered with the new master before the failure.

Once the old failed master is up running, it can take over the role of the master. This method requires a
full replication back from the new master and configure the old master as a replica, even if the data of
the old master was preserved. The old master could contain updates that were not yet replicated at the
moment of failure. These updates can interfere with the updates on the new master and corrupt the data.

Preparing for replication
This example shows how to set up a simple replicating system based on an existing single server
application. In this example, the specific goal of replication is to improve performance by duplicating
the application and federation on different hosts.

First prepare the databases for replication by creating a temporary segment in each database. That
way the temporary results can be created in the replica databases.
1. To create a temporary segment, use code like the following:

// Creating a temporary segment in Java code
session.getDatabase().createTemporaryDataSegment("tempSegmentName", null, 0);
session.getDatabase().setTemporaryDataSegment("tempSegmentName");

A temporary segment can also be created with the Admin Client: just right-click Segments, enter
an ID and check the temporary flag.

2. Create the replica by running the following command on the replica host:

294 EMC Documentum xDB Version 10.5 Manual

Methods for replication

xdb create-replica --federation xhive://masterhost:1235
--replicaid newOrExistingReplicaId
--replicabootstrappath /path/to/new/replicadata/XhiveDatabase.bootstrap
--password superuserpassword

The example assumes that the master server is running a page server that is accessible from other
hosts, and that the replica host has xDB installed. The create-replica command is a wrapper
around the XhiveFederationIf.registerReplicator(...) and XhiveFederationIf.replicateFully(...)
API calls. The calls register the replica in the master federation and copy the complete federation
over to the replica host.

Replication application code sample
On the master host, the federation can be accessed in the normal way, as long it acts as a page server to
the replicating host. Assuming for performance reasons that the database files are accessed directly, the
driver initialization code in the application is:
XhiveDriverIf driver =

XhiveDriverFactory.getDriver("/path/to/XhiveDatabase.bootstrap");
driver.init(numCachePages);
driver.startListenerThread(new ServerSocket(1235));

It is best to have one code base for the application. Use a configuration switch to indicate whether the
machine is acting as a replica or master, with a corresponding driver configuration and usage code.

The driver configuration code on the replica host depends on the application. If the application
only runs read-only transactions on the replica federation, then only an extra call to the
XhiveDriverIf.configureReplicator(...)object is needed. However, in this example the application
also allows for read-write transactions. Since xDB replication only permits updating of the master
copy of the federation, this process requires configuring the replica to allow for update transactions.
Specifically, on the replica a distinction is made between read-only transactions and update
transactions, which have to access the master federation. This results in much slower performance for
these update transactions. Therefore this setup is only advised if most of the application transactions
are read-only transactions.

The following code creates two driver objects, one that acts on the replica and one that connects
to the master-server directly:
// On replica-host, use two drivers
XhiveDriverIf masterDriver =
XhiveDriverFactory.getDriver("xhive://masterhost:1235");

masterDriver.init(numCachePages / 2);
XhiveDriverIf replicaDriver =
XhiveDriverFactory.getDriver("/path/to/replicadir/XhiveDatabase.bootstrap");

driver.configureReplicator("xhive://masterhost:1235", "previouslySetupId");
replicaDriver.init(numCachePages / 2);

In the session pooling code, you decide which driver to get the session from based on whether it is
a read-only transaction or not. For performance, it is advisable to have your session pool code and
the code that uses the session pool already distinguish between read-only and read-write transactions.
Use the XhiveSessionIf.setReadOnlyMode(...) method for concurrency performance. The following
example describes the getSession.
synchronized XhiveSessionIf getSession(boolean readOnlyTransaction) {
if (readOnlyTransaction) {

EMC Documentum xDB Version 10.5 Manual 295

Methods for replication

return waitForUpdates(replicaDriver.createSession());
} else {
return masterDriver.createSession();

}
}

The code that pools the sessions replaces the createSession call. Since there are two drivers,
also set up two session collections.

The read-only transactions are faster because they use the replica. However, xDB replication is lazy.
When an update transaction on the master federation finishes, it is not guaranteed that a transaction
started directly after on the replica detects the changes. This restriction can be problematic, , if the
application adds a document to a library and then immediately presents the contents of the library to the
user in a read-only transaction. The library contents could not be updated on the replica yet. Therefore
it is better for a session on the replica to wait for updates made in a session on the master server. In the
session pool code, you could register a timestamp each time a read-write session completes:
XhiveSessionIf.TimeStamp currentWaitTimeStamp = null;

synchronized returnSession(XhiveSessionIf session) {
// Regular session pool code
....
if (session.getDriver().equals(masterDriver)) {
currentWaitTimeStamp = session.getUpdateTimeStamp();

}
}

Then call a routine from the getSession method that waits for the updates to be available on the
replica before continuing:
XhiveSessionIf waitForUpdates(XhiveSessionIf session) {
if (currentWaitTimeStamp != null) {
session.waitForTimeStamp(currentWaitTimeStamp);
currentWaitTimeStamp = null;

}
return session;

}

Note: Lazy does not mean that replication changes take a long time. It means that replication is not
guaranteed. In practice, the XhiveSessionIf.waitForTimeStamp(...) call completes immediately
or quickly.

296 EMC Documentum xDB Version 10.5 Manual

Chapter 15

Configuring Multiple Backend Servers

This chapter contains the following topics:

• xDB multi-node architecture
• Transaction recovery
• Multi-node bootstrap configuration
• Multi-node considerations
• Multi-node run-time restrictions
• Managing nodes
• Methods for multi-node deployment
• Replacing a non-primary node
• Changing node identity
• Replacing a primary node

xDB multi-node architecture
The multi-node feature can provide greater flexibility when it comes to creating a highly scalable XML
database deployment, with higher availability and disaster recovery capabilities. Multi-node can also
provide great benefits for ingesting large volumes of data.

This chapter introduces multi-node concepts and constraints, gives some examples of possible
multi-node deployment and use, and discusses some disaster recovery aspects.

A page server is responsible for delivering data pages, which store documents and indexes, to front-end
applications. By default, xDB allows only a single page server per federation.

In some cases, a single page server can become a bottleneck, for example due to an increase in the
number of clients. The multi-node feature allows you to distribute a data set over multiple so-called
node servers, in a way that is somewhat analogous to partitioning in the relational database world. Its
data partitioning mechanism is based on Detachable libraries, page 46. A data binding mechanism is
used to assign each detachable library to a node server. A node server can service multiple libraries.
A library can be bound to several node servers. When a library is bound to a node server, that node
server can read and modify the library.

The data is distributed into a number of different detachable libraries, each serviced by a particular
node server. Any reading or writing of the detachable library data pages must go through the binding
node server. A calling application, such as a web application hosted within an application server, can
invoke xDB to store and retrieve data in the libraries in much the same way as with a single page
server, and xDB transparently dispatches requests to the relevant nodes.

EMC Documentum xDB Version 10.5 Manual 297

Configuring Multiple Backend Servers

If data is evenly distributed among the various libraries, you can achieve parallel ingestion of the data.

One of the node servers is designated as primary server, and the other node servers are called
non-primary servers. Usually, each node server will run on a separate host machine, but multiple
node servers can run on a single host if necessary.

Note: The primary server must always be active to enable access to the database.

Although data to node server binding is implemented at library level, the actual binding information
is stored at segment level. Changing the binding of a library causes updates to all the segments of
the library.

Example of a multi-node configuration

An example configuration with two xDB nodes is shown in xDB multi-node configuration, page 298.

This example shows two front-end application servers, each hosting a web application with an xDB
client within it. Behind the scenes, each xDB client can connect to both of the server-side nodes. Each
node is bound to one or more libraries. One of the node servers is designated as the primary server, the
other node server is called a non-primary server.

Node server 1 serves the detachable libraries lib1, lib2, and lib3. As primary, it also serves the root
library, which cannot be detachable. Node server 2 serves detachable libraries lib2, lib3, and lib4.

Figure 10 xDB multi-node configuration

298 EMC Documentum xDB Version 10.5 Manual

Configuring Multiple Backend Servers

Transaction recovery
Each node server maintains its own transaction log and recovers the libraries that are bound to it. A
transaction in a multi-node installation can only make updates on a single node. All transactions are
handled the same way as in a single-node installation. If a node server fails, restarting the node server
recovers the binding libraries to a consistent state.
Note: The primary node server must always be started first.

Multi-node bootstrap configuration
A multi-node configuration requires a modified bootstrap file format, using <node/> and
<binding_server/> elements to provide information about the nodes and the segment-to-server binding.

Note: The command-line client and the Admin Client provide functions to modify the bootstrap file
for multi-node. Editing the bootstrap file manually is NOT recommended.

Multi-node bootstrap file example

The sample bootstrap file below defines the example configuration shown in xDB multi-node
configuration, page 298.

The node and segment-to-server bindings are highlighted. There are two xDB nodes. The
name="primary" attribute for the first node indicates that this is the primary server. The federation has
six segments. The default segment and Seg1 are bound to the primary. Segments Seg4 and Seg5 are
bound to Node2. The two read-only segments Seg2 and Seg3 are bound to both nodes.
<?xml version="1.0" encoding="UTF-8"?>
<server version="xDB 10.1" pagesize="8192" license=<license> passwd=<password>>
<node name="primary">

<log path="log" id="1210583277531" keep-log-files="false"/>
</node>
<node name="Node2" host="host2", port="1236",>

<log path="Node2-log" id="1210583888574" keep-log-files="false"/>
</node>
<database name="Shanghai">
<segment id="default" temp="false" version="1" state="read-write"

usage="non-detachable" usable="true">
<file path="Shanghai-default-0.XhiveDatabase.DB" id="0"/>
<binding_server name="primary"/>

</segment>
<segment id="Seg1" temp="false" version="1" state="read-write"

usage="detachable_root" usable="true"
library-path="/Lib1" library-id="0">

<file path="Shanghai-Seg1-0.XhiveDatabase.DB" id="1"/>
<binding_server name="primary"/>

</segment>
<segment id="Seg2" temp="false" version="1" state="read-only"

usage="detachable_root" usable="true"
library-path="/Lib1/Lib2" library-id="0">

<file path="Shanghai-Seg2-0.XhiveDatabase.DB" id="2"/>

EMC Documentum xDB Version 10.5 Manual 299

Configuring Multiple Backend Servers

<binding_server name="primary"/>
<binding_server name="Node2"/>

</segment>
<segment id="Seg3" temp="false" version="1" state="read-only"

usage="detachable" usable="true"
library-path="/Lib1/Lib2" library-id="0">

<file path="Shanghai-Seg3-0.XhiveDatabase.DB" id="3"/>
<binding_server name="primary"/>
<binding_server name="Node2"/>

</segment>
<segment id="Seg4" temp="false" version="1" state="read-write"

usage="detachable_root" usable="true"
library-path="/Lib1/Lib4" library-id="1">

<file path="Shanghai-Seg4-0.XhiveDatabase.DB" id="4"/>
<binding_server name="Node2"/>

</segment>
<segment id="Seg5" temp="false" version="1" state="detach_point"

usage="detachable_root" usable="true">
<file path="Shanghai-Seg5-0.XhiveDatabase.DB" id="5/>
<binding_server name="Node2"/>

</segment>
</database>
</server>

Multi-node Admin Client example

To the Administrator, the above bootstrap example would look like this in the Admin Client:

The Server nodes option of the Federation menu would show:

300 EMC Documentum xDB Version 10.5 Manual

Configuring Multiple Backend Servers

Server upgrade from older xDB release

When an xDB 10 server is started for the first time against a federation that was created using an
older xDB release, an internal server upgrade process modifies the bootstrap file. By default, the
upgraded server acts as the primary server. All existing libraries are not detachable, and are bound to
the upgraded server.

If the resulting federation is to be changed into a multi-node configuration, the administrator has to
set up each node manually.

<node/>

The <node/> element describes a node server.

Attributes

Name Default Description

node name The name of the node server.

The node element for the primary node does not have the host and port
attributes. The node name of the primary node is always primary. The
name is automatically assigned to the primary node when a federation
is created and cannot be changed.

host name The host name of the node server, if the server is not the primary node.

port number The port number of the node server, if the server is not the primary

node.

node server log

directory

The log directory of the node server.

The default log directory of primary server is log. The default log
directory for a non-primary node server is host name-log. With
multi-node support, the "log" element is a child of the "node" (instead
of the "server") element.

When a node server is added, the administrator can specify a different
log directory for that node server.

Child elements

The <node/> element can have the following child elements:

• <log/>

<binding_server/>

The <binding_server/> element maps a segment (library) to multiple node servers.

Segment to server bindings are stored as child elements of <segment/>, page 231 element in the
bootstrap file.

EMC Documentum xDB Version 10.5 Manual 301

Configuring Multiple Backend Servers

Attributes

Name Default Description

name The name of the node server to which the segment is bound.

Multi-node considerations
For multi-node, the recommended indexing method is multipath indexing.

Multi-node constraints

Multi-node architecture imposes a number of constraints, including:

• Multi-node configuration requires use of client-server mode, page 69.

• Multi-node configuration does not support replication.

• For access to the database, the primary node server must always be active.

• Data storage must be symmetrically accessible to all the server hosts. This implies that all the
database files, including server logs, must be stored on SAN, NAS, or NFS.

• All node servers must use the same directory path to access the data directory.

• Only characters a-z, A-Z and 0-9 are allowed in server node names.

• The following multi-node library binding rules are enforced:

– A library is always bound to at least one node server.

– The root library of a database is always bound to the primary node server and the binding
cannot be changed.

– A read-write detachable library can be bound to only one node server.

– A read-only detachable library can be bound to more than one node server.

– Binding a detachable library to a node server binds all descendant libraries, including
non-detachable libraries, to the same server.

– Only the binding of a detachable library can be changed. The binding of a non-detachable library
cannot be changed directly. However, if the non-detachable library has a detachable ancestor, the
binding can be changed indirectly by modifying the binding of the detachable ancestor.

– Only the database administrator can change the bindings of a detachable library.

• Multi-node does not fully support distributed transactions. An update transaction can make updates
only to libraries bound to a single node server, but it can read data pages in any libraries of the
database provided it follows locking rules to avoid distributed deadlock.

302 EMC Documentum xDB Version 10.5 Manual

Configuring Multiple Backend Servers

Example

The table below compares two examples of valid transactions with one invalid transaction, occurring
on the libraries in the multi-node architecture, page 297 example.

Transaction 1 Transaction 2 Transaction 3

begin begin begin

.

update Root-Lib read Root-Lib update Lib1

update Lib1 read Lib2 update Lib4

. . . read Lib3 . . .

commit . . . commit

commit

Transaction 1 is valid, because the
Root library and Lib1 are bound to
the same server.

Transaction 2 is also valid, because
it performs no updates.

Transaction 3 is not allowed. It
violates the locking rules, because
it updates Lib1 and Lib4, which
are bound to different nodes.

Multi-node run-time restrictions

The following run-time restrictions apply to the primary and non-primary node servers:

• The primary server must always be started first. Non-primary servers can be started in any order.

• The primary server must be up and running to access the federation.

• When the primary server is down, the entire federation becomes unavailable.

• When a non-primary server is down, the libraries that are bound to the server become unavailable.

• A node server can be started only after the node server has been added.

• A node server can be updated or removed only if the node server is not running.

Managing nodes
xDB automatically creates a primary node as part of a federation. The primary node cannot be removed.

The command-line client provides xdb commands to manage and configure multi-node architecture
properly, including add-node, remove-node, and update-node, add-binding, change-binding and
remove-binding. The commands run-server and stop-server have multi-node options.

Note: If you need to modify the bootstrap file for multi-node, use xDB functions. Editing the bootstrap
file manually is NOT recommended.

EMC Documentum xDB Version 10.5 Manual 303

Methods for multi-node deployment

Command examples

The following examples show use of the xdb add-node, xdb remove-node, and xdb update-node
commands to add, remove, and update node servers.
xdb add-node --passwd secret --nodename "Node1" \
–host "Node1Host" --port 1236
xdb remove-node --passwd secret --nodename "Node2"
xdb update-node --passwd secret --nodename "Node1" \
–host "Node1Host" --port 1238

Methods for multi-node deployment

Methods for managing nodes

Non-primary nodes can be added or removed by calling the addNode() or removeNode() API methods
of XhiveFederationIf. The updateNode() method updates an existing node. Non-primary servers can
be shut down using the shutdown() method. The corresponding xdb commands call these API methods.

Examples

The following code fragment adds, removes, and updates a node server.
XhiveDriverIf driver =

XhiveDriverFactory.getDriver("xhive://primaryHost:1235");
if (!driver.isInitialized()) driver.init(1024);
XhiveSessionIf session = driver.createSession();
Session.connect(superUserName, superUserPassword, null);
XhiveFederationIf federation = session.getFederation();
// Add node Node1 with host Node1Host and port 1235
federation.addNode("Node1", "Node1Host", 1236);
// Remove node Node2
federation.removeNode("Node2");
// Change listening port of Node1 to 1238
federation.updateNode("Node1", "node1Host", 1238);

The following code fragment uses the getAllNodeInfo() method to retrieve all non-primary node
server information.
XhiveFederationIf federation = session.getFederation();
List<XhiveNodeServerInfoIf> nodeInfoSet = federation.getAllNodeServerInfo();
for (XhiveNodeServerInfoIf nodeInfo : nodeInfoSet) {
System.out.println("Node name = " + nodeInfo.getNodeName());
System.out.println("Host name = " + nodeInfo.getHost());
System.out.println("Port number = " + nodeInfo.getPort());
System.out.println("Log directory = " + nodeInfo.getLogPath());

}

304 EMC Documentum xDB Version 10.5 Manual

Methods for multi-node deployment

Locking rules

In an xDB multi-node configuration, a transaction can update data pages bound to a single node only.
Therefore a transaction cannot acquire write locks on more than one node. Despite this restriction,
distributed deadlock is still possible. For example, a transaction can read any data pages in the database
and thus acquire read locks on segments bound to any node server. Furthermore, when a transaction
updates a library, it has to acquire read locks on other segments/libraries on other nodes.

Distributed deadlock can be avoided by enforcing the following locking rules:

• A transaction that has only read locks can get a read lock on any objects bound to any node server.

• A transaction can only acquire a write lock on a node server if the transaction has no write locks
on the other node servers. All read locks on the other nodes must be on ancestor segments of the
segment on which the transaction is requesting write lock.

• Once a transaction has a write lock on a node server, it cannot request write locks on any node
servers. The transaction can request read locks only in segments that are descendants of the segment
on which it has write locks, or on ancestor segments.

Disabling distributed deadlock detection

xDB can enforce locking rules, page 305 to avoid distributed deadlock. Distributed deadlock detection
is enabled by default.

To disable distributed deadlock detection, do one of the following:

• Set property com.xhive.skipdistributeddeadlockdetection to true.
The com.xhive.skipdistributeddeadlockdetection property affects all sessions in the same JVM.

• Call setSkipDistributedDeadlockDetection(true) of the XhiveSessionIf interface.
The setSkipDistributedDeadlockDetection(true) method call affects the calling session only

Modifying library bindings

When xDB creates a detachable library, the binding of the segment that is used determines the initial
library binding. The node server to which the segment is bound can be specified when creating a
segment using the createSegment() API method of XhiveDatabaseIf .

Once a detachable library has been created, you can use the changeBinding(), addBinding(), and
removeBinding() API methods to change, add, and remove the bindings of the library.

Examples

The following code example creates a segment using the createSegment() method.
session.connect(dbaUserName, dbaUserPassword, "MyDatabase");
session.getDatabase().createSegment("node1", "segment1", null, 0);

The following code example changes the binding of a library to the node Node1.
XhiveLibraryIf library = session.getDatabase.getByPath("/library1");
library.changeBinding("Node1");

EMC Documentum xDB Version 10.5 Manual 305

Methods for multi-node deployment

Applications for multiple-node configurations
In a multi-node configuration, each server serves only a portion of the database. Applications
can get access to all the objects in the database by establishing a single session to the primary
server. Applications cannot make connections to non-primary node servers directly. When the
XhiveDriver.createSession() method creates a session, it creates a connection to the primary server.
This connection is called a primary connection.

The first time a session attempts to access data on a non-primary server, it creates a connection to
the non-primary server using the same user credentials. A session can have one connection to each
backend server in the configuration. A connection to a non-primary server is called a sub connection.
Access to different node servers is transparent to the application. This node transparency means that
there are no special requirements for writing application programs intended to run in multi-node
environments. As far as the application is concerned, the primary server is the only server.

An application makes connections to the primary server just like it would in a single node
configuration. Every transaction on the primary server is repeated on every node server that is
involved in the current transaction.

The following administrative operations should run in a separate transaction instead of executing them
with other operations in the same transaction:

• Creating a detachable library.
• Changing the library state to read-only.
• The following operations in the XhiveLibraryIf interface:

– changeBinding()
– addBinding()
– removeBinding()
– backup()
– attach()
– detach()

• The backupLibrary() operation in the XhiveDatabaseIf interface.

Example application: Phone Call logging

As an example of a possible multi-node application, consider how a fictional U.S. cell phone company
might use a multiple-node configuration to store cell phone call information. Each cell phone call is
logged as an XML document, and all call transactions are stored in a multi-node deployment, because
of the high volume of incoming data (3,000 call transactions per minute), as well as for the sake of
high availability and disaster recovery.

The application logic is implemented as a distributed web application, hosted within a Java application
server. The web application serves as the interface point for the company back-office systems. A
back-office system will generate the call transaction and send a transaction write request to the web
application. Each new call transaction will be saved as an XML document in a library for the region
where the customer was when placing or receiving the call. For example, if someone in New York

306 EMC Documentum xDB Version 10.5 Manual

Methods for multi-node deployment

City receives a call, the resulting call transaction is logged to the USNortheast library. The web
application will also be the interface point for a web portal, where customers can search their personal
call transaction logs. When a user enters search criteria from the portal, the portal will generate a
query request to the web application.

Call volumes are spread equally across the various US regions, and the company models the data as
one XML library per US region, with all regional XML libraries sharing the same parent library:

MobileCallLog

• USNortheast

• USSoutheast

• USMidwest

• USSouthwest

• USWest

Deployment Topology

Due to its requirements and data model, the company chooses a multi-node deployment with 5 nodes,
where each node has read/write access to a single child library:

In this deployment topology, one server node has been mapped to each regional XML library to
handle read/write operations for that particular library. When the web application needs access
to call transaction data in a regional library, an App Server transparently obtains a connection to
the appropriate server node.

A spare server node is kept on hot standby, ready to be incorporated into the system if one of the
current server nodes should fail. As a result, 6 server nodes are deployed in all. Furthermore, in this
sample deployment topology the libraries reside on a SAN, therefore high availability and disaster
recovery of the actual data is abstracted away from the IT owner managing the deployment.

Three identical application server instances allow requests to be load-balanced across the application
servers. Each xDB client connects to appropriate server nodes as and when access to the library
bound to a particular server node is required.

EMC Documentum xDB Version 10.5 Manual 307

Methods for multi-node deployment

Data access

To explore the relationship between calling application, client APIs, and server nodes, we will walk
through the system interaction for the following use cases:

• Calling application sends a request to store a call transaction to the database
• Calling application issues a query to find call transactions
• Calling application requests a specific call transaction

Store a call transaction

1. A customer in New York City finishes a cell phone call.
2. A proprietary system of the cell phone company sends a call transaction write request to one of the

3 application servers that handle call transaction write requests.
3. The application server receives the write request, and in turn invokes a client API to write the call

transaction to the appropriate XML library. Because this call occurred in New York City, the
calling application will have specified in the write request that the XML document should be stored
in the USNortheast library. The client API transparently sends the request to Node 1, which handles
read/write requests for the USNortheast library.

4. The Node 1 server receives the write request, writes the call transaction to the library, and returns
success.

Issue a query

1. A customer uses a self-service web application to view his call log. In particular, the customer
would like to search for call transactions within the past week.

2. Customer-facing portal dispatches the query request to one of the 3 application servers. In addition
to handling call transaction write requests, the web application hosted on the 3 application servers
is also designed to handle query requests.

3. The application server receives the query request and turns the query request in to a formal XQuery.
The web application within the application server invokes the XQuery client API.

4. The client API transparently dispatches page requests to all 5 server nodes. In this use case, the
customer’s query spans across all 5 libraries because the customer did not enter a qualifier in his
query such as “calls within the past week placed in NYC”.

5. The client API transparently gathers pages from the 5 server nodes, continues to process the
XQuery request as needed, then consolidates the results into a single XQuery result set.

308 EMC Documentum xDB Version 10.5 Manual

Methods for multi-node deployment

6. The results ultimately get propagated from the web application up to the customer-facing portal

Request a specific call transaction

1. Customer uses a portal to view his call log, and would like more information about a particular call
transaction. Therefore, the self-service portal issues a request to fetch a specific call transaction
to one of the 3 application servers.

2. The web application within an application server invokes a client API by providing information
about the call transaction, including the XML library where the underlying call transaction is called.

3. Based on the XML library specified, the client API routes the fetch request to the correct server
node.

4. The server node receives the request and returns the call transaction.

5. The call transaction is ultimately propagated back up to the customer-facing portal.

Disaster recovery options

One main benefit of multi-node lies in the area of high availability and disaster recovery.

The most elaborate approach is that the multi-node deployment includes a server node whose
sole purpose is to act as a hot standby: this standby is running, but not bound to any of the XML
libraries. If one of the server nodes fails, the standby server node can be bound to the XML library
to which the failed server was previously bound. In the figure below, Node 4 has failed, and
the Standby Node has been bound to the US Southwest library to provide continuity of service.

High availability can also be achieved without a hot standby node. In the event of a
node failure, another bound node can take over read access for the affected library. In the
figure below, Node 2 has failed, and the US Southeast library has been bound to Node 1,

EMC Documentum xDB Version 10.5 Manual 309

Methods for multi-node deployment

giving Node 1 access to 2 XML libraries, so continuity of service has been maintained.

Note: These high availability techniques can only be used for read-only libraries. If a node fails that
serves a read/write library, recourse is to either restart the failed node, or to replace the failed node with
another preconfigured one.

An additional, worst-case disaster recovery policy should be to back up the XML libraries periodically.
The XML library backup can occur in parallel. In case of a catastrophic failure, for example if the
XML libraries are lost along with all the server nodes, a new environment can then be created by
restoring the backup XML libraries in parallel, and bringing new server nodes online.

Multiple-node API examples

For developing and testing its new system, the phone company chooses a slightly simplified setup:

The partitioning of the documents is based on US regions, with a separate library for each region plus
one hot standby node, but with only three active node servers, and some libraries sharing a node server.

Creating and starting server nodes

The fragment of java code below creates and starts the server nodes for the above multi-node
architecture.

310 EMC Documentum xDB Version 10.5 Manual

Methods for multi-node deployment

class MobileCallLogBackend {

private static final String BOOTSTRAP_FILE_NAME = "some_path/fed.bootstrap";
private static final String FEDERATION_FOLDER = "federation";
private static final String PRIMARY_LOG_FOLDER = "log";
private static final int PAGE_SIZE = 512;
private static final String SUPERPWD = "test";

private static final String XDB_NODE_PRIMARY = "primary";
private static final String XDB_NODE_2 = "xDBNode2";
private static final String XDB_NODE_3 = "xDBNode3";
private static final String XDB_STANDBY_NODE = "xDBStandby";

private static final int NODE_PRIMARY_PORT = 1235;
private static final int NODE_2_PORT = 1236;
private static final int NODE_3_PORT = 1237;
private static final int NODE_STANDBY_PORT = 1238;

/*
* This method creates the Mobile application deployment topology.
* It creates federation and database and then
* creates and runs xDB nodes to serve incoming query/update queries.
*/
private void setUp() {
//сreate federation

XhiveFederationFactoryIf ff = XhiveDriverFactory.getFederationFactory();
ff.createFederation(BOOTSTRAP_FILE_NAME, PRIMARY_LOG_FOLDER, PAGE_SIZE, SUPERPWD);

//start primary node
primaryDriver = startNode(XDB_NODE_PRIMARY, NODE_PRIMARY_PORT);

//create superuser session to create database and add new nodes
//only superuser can create database or add/remove new nodes
XhiveSessionIf superSession = driver.createSession();

//connect as a superuser
superSession.connect(SUPERUSER, SUPERPWD, null);

//start transaction
superSession.begin();
XhiveFederationIf federation = s.getFederation();

//get and change license key
String license = getLicenseKey();
federation.setLicenseKey(license);

//create database
federation.createDatabase(DBNAME, DBPWD);

//create xDB node2, xDB node3 and standby node
federation.addNode(XDB_NODE_2, host, NODE_2_PORT, null);
federation.addNode(XDB_NODE_3, host, NODE_3_PORT, null);

EMC Documentum xDB Version 10.5 Manual 311

Methods for multi-node deployment

federation.addNode(XDB_NODE_STANDBY, host, NODE_STANDBY_PORT, null);

//commit super session
superSession.commit();

//terminate super session
superSession.disconnect();
superSession.terminate();

// start xDBnode2, xDB node3 and standby node
driverNode2 = startNode(XDB_NODE_2, NODE_2_PORT);
driverNode3 = startNode(XDB_NODE_3, NODE_3_PORT);
driverStandby = startNode(XDB_NODE_STANDBY, NODE_STANDBY_PORT);

}

/**
* This method starts a node.
* @nodeName name of the node to run.
* @port specifies a port to listen to icoming requests.
* @return driver object of the running xDB node
*/
XhiveDriverIf startNode(String nodeName, int port) throws IOException {
//create and initialize node server
XhiveDriverIf nodeDriver =

XhiveDriverFactory.getDriver(BOOTSTRAP_FILE_NAME, nodeName);
if (!nodeDriver.isInitialized()) {
nodeDriver.init(1024);

}

//start listening thread on the server node to listen to incoming client requests
ServerSocket socket = getServerSocketFactory().createServerSocket(port);
nodeDriver.startListenerThread(socket);
return nodeDriver;

}}

The comments below appy only to multi-node API related features. See the xDB API javadocs for
information on API methods used in the java code above. Each federation has a primary node,
which is created at the federation creation time. An Administrator can specify primary node
parameters like primary node log files directory in the XhiveFederationIf.createFederation(...)
API method. An Administrator can also add an arbitrary number of additional nodes using the
XhiveFederationIf.addNode(...) method. The method adds the node specification to the bootstrap file
and should be run within a transaction initiated by a superuser session.

It’s important to notice that each node has a separate log directory, but it is not possible to run a
distributed transaction over 2 nodes and update these 2 nodes. It is possible to read libraries bound to
different nodes within a transaction, but you can update only one node. Otherwise, an XhiveException
will be thrown.

To start a node, get and initialize a driver for the node, and then start a listening thread to listen to
requests from clients. If deployment includes a multi-node architecture, then use of xDB client/server
mode is assumed. Embedded xDB mode is not applicable for the multi-node feature.

312 EMC Documentum xDB Version 10.5 Manual

Methods for multi-node deployment

The setup() method starts the server nodes. Each server node listens for client requests on a separate
port number, but a client should always connect to a primary node. This means that, to start to
work with multi-node servers, a client should first create a remote driver for the primary node using
XhiveDriverFactory.getDriver(primary-node-URL), and then create sessions using this driver. If a
client accesses a library bound to a non-primary node, then xDB automatically redirects requests to
the correct node server.

Changing library binding

The following jave code fragment demonstrates how to create application libraries and bind them to
the server nodes according to the deployment topology.

/**
* Create a detachable concurrent library and bind it to the list of specified nodes.
* @rootLib root library of the database
* @segmentId id of the segment
* @libName name of the new library
* @nodeName binding node
*/
private void createLibrary(XhiveLibraryIf rootLib,

String segmentId, String libName, String nodeName) {
// create segment to store new library
rootLib.getDatabase().createSegment(segmentId, null, 0);

// create detachable concurrent library in segment
// by default the library is bound to the primary node
XhiveLibraryIf library = rootLib.createLibrary(XhiveLibraryIf.DETACHABLE_LIBRARY |

XhiveLibraryIf.CONCURRENT_LIBRARY, segmentId);
library.setName(libName);

//append library to the root library
rootLib.appendChild(library);

//change binding of the library replacing primary node binding
library.changeBinding(nodeName);

}

The createLibrary(...) method creates a detachable concurrent library in a separate segment and
binds it to a server node. The XhiveLibraryIf interface contains more methods like addBinding(...),
removeBinding(...) and getBindingNodes(...) for handling library bindings properly.
Note: Only detachable libraries can be bound to non-primary server nodes.

In the event of a node failure, the Administrator can bind the standby server node to the library served
by the failed node. However, this technique can only be used for read-only libraries. For a read/write
library, if the node serving it fails, the only options are to either restart the same node, or for another
preconfigured node to replace the failed one.

EMC Documentum xDB Version 10.5 Manual 313

Methods for multi-node deployment

Samples

CreateMultinodeDatabase.java

Replacing a server
Various circumstances can require replacement of a host machine, for example: a need for a faster
server, or a hardware failure or server crash.

In multi-node environments, replacing a host for a non-primary server will be different than for a
primary server. Furthermore, replacement can involve replacing the entire node, or keeping the node
and replacing only the underlying host machine. The latter case is called a node identity change.

For guidelines on host replacement, see

• Changing node identity, page 314.
• Replacing a non-primary server, page 314.
• Replacing a primary server, page 315.

Replacing a non-primary node
The steps below replace a non-primary server in a multi-node configuration. Node N1, running on
host H1, is replaced with node N2 running on a more powerful host H2. Node server N1 is running
and healthy.

To replace the non-primary node:
1. Set all the libraries that are bound to node N1 to a read-only state.
2. Install xDB server on host H2.
3. Use the addNode() method of the XhiveFederationIf interface to add a new node N2 on host H2

with a proper port number.
4. Use the changeBinding() method of the XhiveLibraryIf interface to change the binding of all

libraries that are bound to node N1 to node N2.
Now node N1 is free of any binding libraries and can be removed without affecting the federation.

5. Shut down node server N1.
6. Use the removeNode() method of the XhiveFederationIf interface to remove node server N1

from the configuration.

Changing node identity
Replacing the underlying host machine while retaining the node name is called a node identity change.
A node identity change is used to recover libraries when a hardware failure occurs. If libraries that
are bound to the failed machine are in an inconsistent state, they must be recovered. In this case the
node name must be retained while the host machine is replaced, because the recovery process reads
transaction logs of the node server.

The following assumes that Node N1 is running on the non-primary host server H1 and experiences a
hardware failure. Host H1 must be replaced with host H2 while the node name N1 is retained.

314 EMC Documentum xDB Version 10.5 Manual

./../../src/samples/manual/CreateMultinodeDatabase.java

Methods for multi-node deployment

To replace a non-primary host while keeping the node name:

1. Shut down the node server N1, if the server is still running.

2. Ensure that the primary server is up running.

3. Install xDB server on the new host H2.

4. Use the updateNode() method of the XhiveFederationIf interface to update node N1 information
in the bootstrap file. Replace host name and port number with the host name and port number of
host H2. Do not change the node name N1.

5. Start node server N1 on host H2.
The server startup process recovers all libraries that are bound to node N1 to a consistent state.

Replacing a primary node
If the primary server crashes, the federation cannot be accessed because it is not possible to establish a
session to the primary server. The only way to recover from a primary node failure is to change the
identity of the primary node. Changing the identity requires replacing the underlying host machine on
which the primary node is running while keeping the primary node name.

To replace a primary server:

1. Install xDB on the new host machine.

2. Restart the server on the new host as primary server.

It is not necessary to update the primary node. The node element for the primary node in the
bootstrap file does not record host name and port number.

Example

The following code snippet launches a backend server as the primary server, by specifying the node
name primary as the second argument in the getDriver() method.
XhiveDriverIf driver = XhiveDriverFactory.getDriver(bsFile, "primary");
driver.init(1024);
ServerSocket socket = new ServerSocket(1235);
driver.startListenerThread(socket);

The primary server has a new xhive://host:port URL. Applications must reconnect to the primary
server using the new URL.

EMC Documentum xDB Version 10.5 Manual 315

Chapter 16

Ant Tasks

This chapter contains the following topics:

• Using xDB Ant tasks
• Using the xhive.bootstrap property with Ant
• xDB Ant type reference
• Referencing xDB Ant types
• xDB Ant task reference

Using xDB Ant tasks
xDB offers custom Ant tasks and Ant types that allow you to use simple XML-based build files to
perform common tasks associated with deploying and managing an xDB application, like creating
and managing database structures. They can also help to reduce the need for writing java programs to
solve incidental problems.

For descriptions of xDB Ant tasks, refer to the xDB Ant task reference, page 323. For descriptions of
xDB Ant types, refer to the xDB Ant type reference, page 318.

Apache Ant is a Java-based build tool. For more information about Apache Ant, refer to
http://ant.apache.org. xDB requires Ant 1.6 or higher. The default build file for the custom xDB Ant
tasks is build.xml in the bin directory of the xDB installation.

To use the xDB Ant tasks and types in a project of your own, the build file for your project must import
the xDB taskdefs and xDB typedefs, as in the example below:
<!-- Import all xDB jars into the classpath -->
<path id="MyClasspath">

<fileset dir="c:/xhive/lib">
<include name="**/*.jar"/>
</fileset>

</path>

<!-- Load xDB Ant tasks -->
<taskdef loaderref="xhive"

resource="com/xhive/anttasks/tasks.properties"
classpathref="MyClasspath"/>

<!-- Load xDB Ant types -->
<typedef loaderref="xhive"

resource="com/xhive/anttasks/type.properties"
classpathref="MyClasspath"/>

EMC Documentum xDB Version 10.5 Manual 317

http://ant.apache.org/index.html

Ant Tasks

The loaderref attribute is required here, because the loaders for the xDB tasks and types must be the
same, whereas Ant uses different loaders for every task and type definition.

Unlike the command-line client of xDB, the xDB Ant tasks do not read the default values from the
xdb.properties configuration file. You can read the properties manually and pass them to the
xDB Ant tasks in your Ant build file.

The Ant tasks use Ant’s built-in message logging.

Using the xhive.bootstrap property with Ant
With xhive-ant, the xhive.bootstrap property automatically points to the location of the page server.
The syntax of the xhive.bootstrap property as used with xhive-ant is
java -Dxhive.bootstrap=xhive://hostname:port

or
java -Dxhive.bootstrap=PathName/XhiveDatabase.bootstrap

xDB Ant type reference
xDB supports various Ant types to indicate the context in which an Ant tasks acts. You can use them to
indicate the federation, database, library, document, user, group or subpath that an Ant task works on.

See the descriptions of the individual Ant types for more information.

Related references

<database/>

<document/>

<federation/>

<group/>

<library/>

<user/>

<subpath/>

<database/>
This Ant type represents a database in a federation.

Attribute Description Required

name The name of the database. Yes

bootstrap Path to bootstrap file. Yes

318 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

user User name to log in. Yes

password Password of the user. Yes

Parameters specified as nested elements

Parameter Description Required

<library/>, page 320 Library element - may occur
multiple times.

No

<document/>, page 319 Document element - may occur
multiple times.

No

Example
<database id="database1"

name="MyDatabase"
bootstrap="c:/xhive/data/XhiveDatabase.bootstrap"
user="username"
password="Password"/>

<document/>
This Ant type represents a document path in the database.

Attribute Description Required

path The path to the document. Yes

Example

<document id="mydocument" path="/dir/dir2/SomeDocument"/>

<federation/>
This Ant type represents a federation.

EMC Documentum xDB Version 10.5 Manual 319

Ant Tasks

Attribute Description Required

bootstrap Path to the bootstrap file. Yes

password Superuser password. Yes

licensekey An xDB license key. No

Example
<federation id="federation1"

bootstrap="c:/xhive/data/XhiveDatabase.bootstrap"
password="TheSuperUserPassword"/>

<group/>
This Ant type represents a user group in a database.

Attribute Description Required

name The name of the group. Yes

Parameters specified as nested elements

The following optional parameters can be specified as nested elements:

Parameter Description Required

<user/>, page 322 User element - may occur multiple
times.

No

<library/>
This Ant type represents a library path in a database.

Attribute Description Required

path Library path Yes

Parameters specified as nested elements

Parameter Description Required

<document/>, page 319 A document in the library - may
occur multiple times.

No

320 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Example
<library id="myLibrary5" path="/existingLib"/>

<subpath/>
This Ant type represents an XhiveSubPathIf instance for a multipath index. For information about
multipath indexing, refer to <multipathindex/>, page 351 and Multipath indexes, page 153.

Attributes

Attribute Description Required

xpath The path to the document. Yes

type Specifies the indexed element
value type, page 161.

No - default is string

fulltextindex Create a full-test index. No - default is false

valuecomparison Index the value of this node. No - default is false

includedescendants Include text from subnodes to the
full-text index.

No - default is false

startendmarkers Add start and end markers to
full-test index.

No - default is false

leadingwildcard Enable leading wildcard search in
this subpath (*pattern).

No - default is false

enumerateelements Enumerate the order of repeated
elements.

No - default is false

returningcontents Enable returning indexed node
contents directly from index.

No - default is false

compressed Compress part of the index. No - default is false

scoreboost Boost factor for the score of this
subpath.

No - default is 1.

Example

<subpath xpath="line"
fulltextsearch="true"
valuecomparison="false"
compressed="true"
returningcontents="true"
includedescendants="true"
enumerateelements="true"
startendmarkers="true"
leadingwildcard="true"/>

EMC Documentum xDB Version 10.5 Manual 321

Ant Tasks

API documentation

com.xhive.index.interfaces.XhiveSubPathIf

<user/>
This Ant type represents a user in the database.

Attribute Description Required

name The user name. Yes

password The user’s password. No

Parameters specified as nested elements

Parameter Description Required

<group/>, page 320 Group element - may occur

multiple times.

No

Referencing xDB Ant types
Because the contexts used in a typical deployment build-file are likely to be used several times in
different tasks, xDB makes it possible to define them in a single target. Reference them in other targets
using their ID attribute. For example, change the init target, as described in the following example.
<!-- Preferably initialize your project using one target on which all
your other targets depend -->
<target name="init">

<!-- Import all xDB jar’s into the classpath -->
<path id="MyClasspath">
<fileset dir="lib">

<include name="xhive-ant.jar"/>
</fileset>
<fileset dir="c:/xhive/lib">

<include name="**/*.jar"/>
</fileset>

</path>

<!-- Load xDB Ant tasks_ -->
<taskdef loaderref="xhive"

resource="com/xhive/anttasks/tasks.properties"
classpathref="MyClasspath"/>

<!-- Load xDB Ant types_ -->
<typedef loaderref="xhive"

resource="com/xhive/anttasks/type.properties"
classpathref="MyClasspath"/>

322 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/index/interfaces/XhiveSubPathIf.html

Ant Tasks

<!-- Define a federation type. You can reference it using its "id"
attribute -->
<federation id="MyFederation"

bootstrap="c:/xhive/data/XhiveDatabase.bootstrap"
password="MySuperUserPassword"/>

<!-- Define a database type. You can reference it using its "id"
attribute -->
<database id="MyDatabase"

bootstrap="c:/xhive/data/XhiveDatabase.bootstrap"
name="MyDatabase"
user="MyUser"
password="MyPassword">

<library path="/MyOtherLibrary"/>
</database>

</target>

allows you to change the examples to:
<createdatabase name="MyDatabase"

dbapassword="MyPassword">
<federation refid="MyFederation"/>

</createdatabase>

or using the databaseref attribute:
<createdatabase name="MyDatabase"

dbapassword="MyPassword">
databaseref="MyFederation"/>

and to:
<createlibrary name="MyLibrary">

<database refid="MyDatabase">
<library path="/MyOtherLibrary"/>

</database>
</createlibrary>

or using the databaseref attribute:
<createlibrary name="MyLibrary" databaseref="MyDatabase"/>

Note: Using the databaseref attribute allows referencing only one federation or database at a time.

xDB Ant task reference
xDB supports various Ant tasks. See the description of the individual Ant task for more information.

If you make a "compilation" like target that calls several of your targets in a particular order,
remember to let this target depend on the same "init" like target the individual targets depend on. Add
inheritrefs="true" to all antcall elements.

Example
<target name="jeroen" depends="init">

<antcall target="test-createdatabase" inheritrefs="true"/>
<antcall target="test-deletedatabase" inheritrefs="true"/>

</target>

EMC Documentum xDB Version 10.5 Manual 323

Ant Tasks

<addgroup/>
This Ant task adds a group to a database. There are two mutually exclusive ways to use this task:

• with the name attribute, to add a single group
• with one or more nested <group/> elements, to add a number of groups

Attribute Description Required

name The name of the group that is added.

This attribute cannot be used in conjunction with the
nested <group/> element.

No

quiet Task progress is not displayed. No - default is false

failonerror Fail the task if the group already exists. No - default is true

Parameters specified as nested elements

Parameter Description Required

<database/>, page 318 The database that contains the new group(s). No

<user/>, page 322 Nested elements specifying the member(s) of a group. No

Examples

Use of the name attribute:
<target name="addgroup-using-name">

<addgroup databaseref="MyDatabase.ref" name="group1" />
</target>

Use of nested <group/> elements:
<target name="add-moregroups">

<addgroup databaseref="MyDatabase.ref">
<group name="group5" />
<group name="group6" />

</addgroup>
</target>

Use of nested <group/> elements with nested <user/> elements. The users are created as members
of the group.
<target name="addgroupuser">
<addgroup databaseref="test.database">

<group name="group1" />
<group name="group2">

<user name="alice" password="secret">
<group name="another_group" />

324 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

</user>
<user name="bob" password="secret" />

</group>
</addgroup>

</target>

<addsegmentfile/>

The addsegmentfile Ant task adds a data file to a database segment.

Attribute Description Required

segmentid The unique ID of the segment to which the file will be

added.

Yes

path The path to server side directory where the data file

should be created. If not specified, then the path is the

same as that for the federation default database.

No

maxsize The maximum size (in bytes) that the file is allowed to

grow to. Default is 0. A value of 0 means the size is

unlimited.

No

Examples

The example below creates a segment "newsegment" and then adds to it a datafile (in the path and
with the maxsize specified):
<target name="addMySegmentFiles">

<addsegment segmentid="newsegment" databaseref="test.database" />
<addsegmentfile segmentid="newsegment" databaseref="test.database"

path="seg2Path" maxsize="122880" />
</target>

<adduser/>
This Ant task adds one or more users to a database.

There are two mutually exclusive ways to use this task:

• with the name attribute, to add a single user.
• with one or more nested <user/> elements, to add a number of users.

EMC Documentum xDB Version 10.5 Manual 325

Ant Tasks

Attribute Description Required

name The name of the user that is added.

This attribute cannot be used in conjunction with the
nested <user/> element.

No

password The password of the new user.

This attribute cannot be used in conjunction with the
nested <user/> element.

Required in conjunction
with the name attribute.

quiet Task progress is not displayed. No - default is false

failonerror Fail the task if the user already exists. No - default is false

Parameters specified as nested elements

Parameter Description Required

<database/>, page 318 The database that contains the new user(s). No.

<user/>, page 322 A user that is created. No.

Examples

Use of the name attribute:
<target name="adduser-target">
<adduser databaseref="MyDatabase.ref" name="jeroen" password="secret" />

</target>

Use of nested <user/> elements:
<target name="add-many-users">
<adduser databaseref="MyDatabase.ref">
<user name="alice" password="secret" />
<user name="bob" password="secret" />

</adduser>
</target>

<backup/>
This Ant task creates an online (hot) backup of the federation. This requires that the database server
is running.

Attribute Description Required

file The file that stores the database backup. Yes

overwrite If the file already exists, overwrite it. No - default is false

326 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

incremental Create an incremental backup that includes only the log
files since the latest, non-standalone backup.

No - default is false

keeplogfiles Do not remove obsolete log files after the backup. No - default is false

standalone Create a standalone backup. This option implies the
keeplogfiles attribute.

A standalone backup does not interrupt the sequence of
incremental backups. Incremental backups cannot be
created with respect to a standalone backup. Only one
backup that is not standalone can be created at the same
time.

No - default is false

quiet Suppress display of task progress. No - default is false

Parameters specified as nested elements

Parameter Description Required

database The database to back up. No

Example

The following example passes a reference to a federation as a database reference.
<target name="make-a-backup">

<backup databaseref="MyFederation.ref" file="new_backup.db" />
</target>

<batchindexadder/>
This Ant task adds multiple indexes in one batch operation, using the XhiveIndexAdderIf interface.
For general information about indexing, refer to Indexes, page 150.

Attribute Description Required

file XML Document containing exported index definitions. No

Parameters specified as nested elements

Index Description

<database/> Specifies a database and library where the index(es) must be added. For the
library, use a nested <library/> element (see example below).

<pathvalueindex/> Add a path value index.

<multipathindex/> Add a multi path index.

EMC Documentum xDB Version 10.5 Manual 327

Ant Tasks

Index Description

<elementindex/> Add an element index.

<fulltextindex/> Add a full-text index.

<idattributeindex/> Add an ID attribute index.

<libraryidindex/> Add a library index.

<metadatafulltextindex/> Add a metadata full-text index.

<metadatavalueindex/> Add a metadata value index.

<valueindex/> Add a value index.

Example
<target name="add-indexes">
<batchindexadder>
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
<metadatavalueindex name="MyMVIndex"

key="bla"/>
<valueindex name="MyValueIndex" elementURI="http://www.x-hive.com/ns"

elementName="title"/>
...

</batchindexadder>
</target>

API documentation

com.xhive.index.interfaces.XhiveIndexAdderIf.html

<checkdatabase/>
This task uses the checkDatabaseConsistency API call to check the consistency of a database.

Parameters

Parameter Description Required

<database/> Nested element specifying the database to be checked. Yes

Checkdomnodes Check the dom nodes. No - default is true

CheckIndexes Check the indexes. No - default is true

CheckAdministra-

tionPages

Check the administration pages. No - default is true

CheckSegmentPages Check the segment pages. No - default is true

CheckPageOwner Check the pages owner. No - default is true

328 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/index/interfaces/XhiveIndexAdderIf.html

Ant Tasks

Example

The example below checks the consistency of a database.
<target name="checkdatabase-target">
<checkdatabase destination="NewName">
<database bootstrap="MyBootstrapFile"

name="MyDatabase"
user="Administrator"
password="MyPassword"
Checkdomnodes="false"
CheckIndexes="false"
BasicCheckIndexes="true"
CheckAdministrationPages="false"
CheckSegmentPages="true"
CheckPageOwner="false"/>

</checkdatabase>
</target>

API documentation
com.xhive.index.interfaces.XhiveConsistencyCheckerIf.html#checkDatabaseConsistency()

<checkfederation/>
This task uses the checkFederationConsistency API call to check the consistency of a federation.

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<federation/> Nested element specifying the federation. Yes

Checkdomnodes Check the DOM nodes. No - default is true

CheckIndexes Check the indexes. No - default is true

CheckAdministrationPages Check the administration pages. No - default is true

CheckSegmentPages Check the segment pages. No - default is true

CheckPageOwner Check the pages owner. No - default is true

Example

The following code example checks the consistency of a federation.
<target name="checkfederation-target">
<checkfederation>
<federation refid="test.federation"/>

EMC Documentum xDB Version 10.5 Manual 329

./../apidocs/com/xhive/index/interfaces/XhiveConsistencyCheckerIf.html#checkDatabaseConsistency()

Ant Tasks

</checkfederation>
</target>

API documentation
com.xhive.index.interfaces.XhiveFederationConsistencyCheckerIf.html#checkFederationConsistency()

<checklibrarychild/>

This Ant task checks the consistency of a library child.

This task uses the XhiveConsistencyCheckerIf.checkLibraryChildConsistency API call.

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database which contains the library. Yes.

name The root path of the library to be checked No

<library/> The library to be checked under root path. No.

Checkdomnodes Check the DOM nodes. No - default is true

CheckIndexes Check the indexes. No - default is true

CheckAdministrationPages Check the administration pages. No - default is true

CheckSegmentPages Check the segment pages. No - default is true

CheckPageOwner Check the pages owner. No - default is true

Example

The following code example checks the consistency of a library.
<target name="checklibrary-target">
<checklibrarychild name="testLib"

Checkdomnodes="false"
CheckIndexes="false"
BasicCheckIndexes="true"
CheckAdministrationPages="false"
CheckSegmentPages="true"
CheckPageOwner="false">

330 EMC Documentum xDB Version 10.5 Manual

./../apidocs/com/xhive/index/interfaces/XhiveFederationConsistencyCheckerIf.html#checkFederationConsistency()

Ant Tasks

<database bootstrap="MyBootstrapFile"
name="MyDatabase"
user="Administrator"
password="MyPassword" >

<library path="/existingLib" />
</database>

</checklibrarychild>
</target>

<checknode/>
This Ant task checks the consistency of a node.

Parameters

This task uses the API call XhiveFederationConsistencyCheckerIf.checkNodeConsistency.

The following optional parameters can be specified as nested elements:

Parameter Description Required

node The node name to be checked Yes

<federation/> The federation the node belongs to. Yes

Checkdomnodes Check the DOM nodes. No - default is true

CheckIndexes Check the indexes. No - default is true

CheckAdministrationPages Check the administration pages. No - default is true

CheckSegmentPages Check the segment pages. No - default is true

CheckPageOwner Check the pages owner. No - default is true

Example

The example below checks the consistency of a node.
<target name="checknode-target">
<checknode node="nodeA">
<federation refid="test.federation"/>

</checknode>
</target>

<closedriver/>
This Ant task closes a federation driver. Note: The driver is also closed when the JVM of the Ant
process exits.

Other xDB Ant tasks do not close the XhiveDriver after they run, to avoid the performance overhead
associated with closing and opening a driver between subsequent xDB tasks. This can become a

EMC Documentum xDB Version 10.5 Manual 331

Ant Tasks

problem if you wish to use xDB Ant tasks, and spawn a new process that will use the database inside
the same Ant process. For example, deploying a servlet using the federation driver on Tomcat.

Note:

Attribute Description Required

bootstrap The path to the federation bootstrap file. Yes

Example

The example below closes a driver.
<target name="deploy-webdav">
<!-- create libraries and add users etc -->
<addlibrary etc />
<adduser etc />

<!-- close the driver -->
<closedriver bootstrap="${xhive.bootFilePath}"/>

<!-- proceed to deploy xDB Webdav module on Tomcat -->
</target>

<copydatabase/>

This Ant task copies a federation database.

If the destination for the copy of the database exists, the task raises an
XhiveException.DATABASE_EXISTS.

Note: The copy process does not copy empty pages, so the copy of the database may be smaller that
the original. Content conditioned indexes are not copied; only their definition remains.

Attribute Description Required

name The database that is copied. Yes

destination The name of the new database copy. Yes

sourcepassword The administrator password of the original database. Yes

supassword The superuser password. Yes

quiet Do not display task progress. No - default is false

Parameters specified as nested elements

Parameter Description Required

federation The federation containing the databases. No.

332 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Example

The example below copies a database.
<target name="test-copydatabase">
<copydatabase name="MyDatabase"

destination="NewName"
sourcepassword="MyPassword"
supassword="SuperUserPassword">

<federation refid="MyFederation" />
</copydatabase>

</target>

<createdatabase/>
This Ant task creates a federation database with a default configuration. If a database with the same
name already exists, the Ant execution script will fail unless failonerror is set to false.

Attribute Description Required

name The name of the database to be created. Yes

dbapassword The administrator password for the new database. Yes

configuration XML file containing a custom configuration for the newly

created database.

No

quiet Do not display task progress. No - default is false

failonerror Fail the task if the database already exists. No - default is true

Parameters specified as nested elements

Parameter Description Required

<federation/> The federation in which the database will be created. Yes

Example

The example below creates a database.

<!-- Declare a federation with an ID, which is used in the database creation task. -->
<federation id="federationId" bootstrap="${xhive.bootFilePath}"

password="${xhive.superpwd}" />

<target name="create-database">
<createdatabase name="${database}" dbapassword="${password}">

<federation refid="federationId" />
</createdatabase>

</target>

EMC Documentum xDB Version 10.5 Manual 333

Ant Tasks

<createfederation/>

This Ant task creates a federation. The bootstrap file, superuser password and license key can be set
explicitly by inserting a <federation/> element, page 319.

Attribute Description Required

bootstrap The name of the bootstrap file. Yes

password The password of the superuser. Yes

licensekey The xDB license key. Yes

pagesize The database page size in bytes. No

logdir A comma separated list of paths to the log file directories

of the new federation. If specified, the first path in the list

represents the primary log directory.

Relative paths, if used, are resolved relative to the
directory of the bootstrap file.

No - default path is log

quiet Do not display task progress. No - default is false

Example

The example below creates a federation.
<target name="create-federation">

<delete dir="MyBootstrapFile" />
<mkdir dir="MyBootstrapFile" />
<createfederation bootstrap="MyBootstrapFile"

licensekey="MyLicenseKey"
password="secret" />

</target>

<createlibrary/>
This Ant task creates a library in a database.

334 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

name The name of the new library.

The library name must be unique. If a library with the
same name already exists, this Ant task is ignored.

Yes

documentslock Documents in the new library lock with the parent. No - default is true

lockwithparent The new library locks with its parent. No - default is false

concurrentlibrary The new library can be modified concurrently. No - default is false

quiet Suppress display of task progress. No - default is false

Parameters specified as nested elements

Parameter Description Required

<database/>, page 318 The database where the new library is created. No

Example

The following code example creates a library.
<target name="CreateMyLibraryUnderParent" depends="init">
<createlibrary name="MyLibrary">
<database refid="MyDatabase">
<library path="/MyOtherLibrary"/>

</database>
</createlibrary>

</target>

<deletedatabase/>

This Ant task deletes a database in a federation. If a database with the given name does not exist, Ant
stops execution, unless the quiet attribute is set to true, or the failonerror attribute is set to false.

Attribute Description Required

name The name of the database to be deleted. Yes

failonerror Stop execution if database name does not exist. No - default is true

quiet Suppress display of task progress. No - default is true

EMC Documentum xDB Version 10.5 Manual 335

Ant Tasks

Parameters specified as nested elements

Parameter Description Required

<federation/> The federation from which to delete the database. No

Example

The example below deletes a database.
<target name="DeleteMyDatabase" depends="init">

<deletedatabase name="MyDatabase">
<federation refid="MyFederation"/>

</deletedatabase>
</target>

<deletegroup/>
This Ant task deletes one or more groups from a database.

There are two mutually exclusive ways to use this task:

• Using a name attribute to add a single group.
• Using one or more nested <group/> elements to delete a number of groups.

Attributes

Attribute Description Required

name The name of group to delete. The name attribute cannot

be used in conjunction with nested <group/> elements.

Yes.

failonerror Specifies whether execution should stop when a database

with the name does not exist. The default value is true.
No.

quiet Specifies whether output about the task progress should

be displayed. The default value is false.
No.

Parameters

The following optional parameter can be specified as nested elements:

Parameter Description Required

<database/> The database that contains the group that is deleted. No.

<user/> The group to delete. No.

Example

The following example uses the name attribute to delete a group:
<target name="delete-one-group">

336 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

<deletegroup databaseref="MyDatabase.ref" name="group1" />
</target>

Using a nested <group/> elements to delete one or more groups.
<target name="delete-many-groups">

<deletegroup databaseref="test.database">
<group name="jeroen3_group" />
<group name="jeroen4_group" />

</deletegroup>
</target>

<deleteindex/>
This Ant task deletes an index.

Attribute Description Required

name The name of the index to delete. Yes

failonerror Stop execution if the specified name does not exist. No - default is true

quiet Suppress display of task progress. No - default is false

Parameters specified as nested elements

Parameter Description Required

<database/>, page 318 The database containing the library where the index is

deleted.

No.

Example

The example below uses a nested <database/> with a nested <library/> element.
<target name="DeleteMyIndex" depends="init">
<deleteindex name="MyIndex">
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</deleteindex>

</target>

<deletelibrary/>
This Ant task deletes a library. If the specified library does not exist, execution stops, unless the quiet
attribute is set to true or the failonerror attribute is set to false.

Attribute Description Required

name The name of the library to delete.

This attribute cannot be used together with "path".

No

EMC Documentum xDB Version 10.5 Manual 337

Ant Tasks

Attribute Description Required

path The full path of the library to delete.

This attribute cannot be used together with "name".

No

failonerror Stop the Ant task if the library does not exist. No - default is true

quiet Suppress display of task progress. No - default is false

Parameters specified as nested elements

Parameter Description Required

<database/>, page 318 The database from which to delete the library. No

Example using the attribute "name"
<target name="DeleteMyLibrary" depends="init">
<!-- Deletes "/MyLibrary/document.xml" -->
<deletelibrary name="document.xml">
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</deletelibrary>
<!-- Deletes "/MyOtherLibrary/MyLibrary2" -->
<deletelibrary name="MyLibrary2">
<database refid="MyDatabase">
<library path="/MyOtherLibrary"/>

</database>
</deletelibrary>

</target>

Example using the attribute "path"
<target name="DeleteMyLibrary"
depends="init">
<!-- Deletes "/MyLib/MyOtherLib/document.xml" -->
<deletelibrary path="/MyLib/MyOtherLib/document.xml">
<database refid="MyDatabase" />

</deletelibrary>
</target>

<deleteuser/>

This Ant task deletes one or more users from a database. There are two mutually exclusive ways
to use this task:

• Using a name attribute to delete a single user.

• Using one or more nested <user/> elements to delete a number of users.

338 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

name The name of a user to delete.

The name attribute cannot be used
in conjunction with nested <user/>
elements.

Yes.

failonerror Stop execution if the user does not

exist.

No - default is true

quiet Suppress display of task progress. No - default is false

Parameters specified as nested elements

Parameter Description Required

<database/>, page 318 The database containing the users to

delete.

No

<user/>, page 322 A user to delete.

If the <deleteuser/> Ant task specifies a
name attribute, the <user/> parameter is
ignored.

No

Example

Using the name attribute to delete a single user:
<target name="delete-user-target">

<deleteuser databaseref="MyDatabase.ref" name="jeroen" failonerror="false"/>
</target>

Using <user/> elements to delete users:
<target name="delete-many-users">

<deleteuser databaseref="MyDatabase.ref" failonerror="true">
<user name="alice" />

<user name="bob" />
</deleteuser>

</target>

<deserialize/>

This Ant task deserializes a library child from a specified file. The library child in the source file
becomes the last child of the target library.

Note: If no target library is specified, the deserialized library replaces the current root library of
the database.

EMC Documentum xDB Version 10.5 Manual 339

Ant Tasks

Attributes

Attribute Description Required

file The source file to deserialize. Yes

quiet Suppress display of task output. No - default is false

Parameters specified as nested elements

Parameter Description Required

<database/>, page 318 The database to contain the deserialized library. No

Example

The following example deserializes the content of a file named MyLibrary.xhd.
<target name="DeserializeMyLibrary" depends="init">
<deserialize file="c:/MyLibrary.xhd">
<database refid="MyDatabase">
<library path="/"/>

</database>
</deserialize>

</target>

<deserialize-users/>

This Ant task deserializes all users and groups of a database, replacing the current users and groups.

Attribute Description Required

file The source file to deserialize. Yes

Parameters specified as nested elements

Parameter Description Required

<database/>, page

318

The database into which to deserialize the users

and groups.

No

Example

The following example deserializes the contents of the file MyLibrary.xhd.
<target name="DeserializeUsers" depends="init">
<deserialize-users file="c:/MyLibrary.xhd">

<database refid="MyDatabase"/>
</deserialize-users>

</target>

340 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

<elementindex/>
This Ant task adds an element index to a library.

Attribute Description Required

name The name of the index that is added. Yes

elements A comma separated list of element names to index. No

concurrent Boolean attribute that specifies whether to create a

concurrent index.

No - default is false

compressed Boolean attribute that specifies whether to create a

compressed index. This attribute is currently only

implemented for non-concurrent indexes.

No - default is false

exists What to do if an index with the same name already

exists. Accepted values are: skip - do not create a

new index, overwrite - delete the existing index

with the same name and create the newly specified

index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

versioninfo Boolean attribute that specifies whether to store

version information in the index.

No - default is false

Parameters specified as nested elements

Parameter Description Required

<database/>, page

318

The database containing the library where the

index is added.

No

Example

The example below contains a nested <database/> element with a nested <library/> element.
<target name="AddMyElementIndex" depends="init">

<elementindex name="MyElementIndex">
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</elementindex>

</target>

<exportlibrary/>
This Ant task exports a library into a database directory.

EMC Documentum xDB Version 10.5 Manual 341

Ant Tasks

Attributes

Attribute Description Required

destdir The destination directory to which to export the library.

By default, the current directory is the export directory.

No

prune Specifies whether to create directories for empty libraries.

The default is true.
No

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to export. No

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="ExportMyLibrary" depends="init">
<exportlibrary destdir="c:/exportdata">
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</exportlibrary>

</target>

<fulltextindex/>
This Ant task adds a value full-text index to a library.

Attributes

Attribute Description Required

name The name of the index that is added. Yes

elementURI The URI of the element to index. Yes

elementName The name of the element to index. This attribute is required

if the attributeName

attribute value is null.

attributeURI The URI of the attribute to index. Yes

attributeName The name of the attribute to index. Required if the value

of the elementName

attribute value is null.

342 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

concurrent Boolean attribute that specifies whether to

create a concurrent index.

No - default is false

compressed Boolean attribute that specifies whether to

create a compressed index. This attribute is

currently only implemented for non-concurrent

indexes.

No - default is false

alltext Boolean attribute that specifies whether indexed

nodes can contain children, indexing the

complete text of all nodes.

No - default is false

analyzer The analyzer class name. No

supportphrases Boolean attribute that specifies whether to

optimize the index to perform phrase queries.

This option improves the quality of scoring

results.

No - default is true

supportscoring Boolean attribute that specifies whether the use

of scoring is supported.

No - default is true

lowercase Boolean attribute that specifies whether indexed

terms are converted to lower case. When this

option is used, queries are not case-sensitive.

No - default is true

stopwords Boolean attribute that specifies whether words

are not indexed if they are from a list of

standard English stopwords.

No - default is true

leadingwildcard Boolean attribute that specifies whether to

support efficient searches with a leading

wildcard, such as in "*TERM". Using this

option can increase the size of the index

considerably.

No - default is false

supportprefixwildcard Deprecated name for leadingwildcard. Using

this option can increase the size of the index

considerably.

No - default is false

includeattributes Boolean attribute that specifies whether to

index the attribute text of indexed elements.

No - default is false

EMC Documentum xDB Version 10.5 Manual 343

Ant Tasks

Attribute Description Required

includestartendtokens Boolean attribute that specifies whether to

include index support for "at start" and "at end"

XQFT filters.

No - default is false

exists What to do if an index with the same name

already exists. Accepted values are: skip - do

not create a new index, overwrite - delete the

existing index with the same name and create

the newly specified index, fail - fail the Ant

task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

versioninfo Boolean attribute that specifies whether to store

version information in the index.

No - default is false

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to which the index

is added.

No

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="AddMyFulltextIndex" depends="init">
<fulltextindex name="MyFullTextIndex"

elementName="title"
alltext="true">

<database refid="databaseRef">
<library path="/MyLibrary/SubLib"/>

</database>
</fulltextindex>

</target>

<idattributeindex/>
This Ant task adds an ID attribute index on a library.

Attributes

Attribute Description Required

name The name of the index that is added. Yes

344 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

concurrent Boolean attribute that specifies whether to create a

concurrent index.

No - default is false

compressed Boolean attribute that specifies whether to create a

compressed index. This attribute is currently only

implemented for non-concurrent indexes.

No - default is false

unique Boolean attribute that specifies whether to use unique keys. No - default is false

exists What to do if an index with the same name already exists.

Accepted values are: skip - do not create a new index,

overwrite - delete the existing index with the same name

and create the newly specified index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to which the index is

added.

No

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="AddMyIDattrbuteIndex" depends="init">

<idattributeindex name="MyIDattrbuteIndex">
<database refid="MyDatabase">

<library path="/MyLibrary"/>
</database>

</idattributeindex>
</target>

<libraryidindex/>

This Ant task adds a library ID index to a library.

Attributes

Attribute Description Required

name The name of the index that is added. Yes

EMC Documentum xDB Version 10.5 Manual 345

Ant Tasks

Attribute Description Required

concurrent Boolean attribute that specifies whether to create a

concurrent index.

No - default is false

compressed Boolean attribute that specifies whether to create a

compressed index. This attribute is currently only

implemented for non-concurrent indexes.

No - default is false

exists What to do if an index with the same name already exists.

Accepted values are: skip - do not create a new index,

overwrite - delete the existing index with the same name

and create the newly specified index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to which the index is

added.

No

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="AddMyLibaryIDindex" depends="init">

<libraryidindex name="MyLibraryIDindex">
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</libraryidindex>

</target>

<listindexes/>

This Ant task lists all indexes for a database library path.

346 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attributes

Attribute Description Required

definitionsToXml String attribute specifying a file to which export the

definitions of all indexes in the given library. If no value is

given the definitions are not exported.

No

info Boolean attribute that specifies whether to provides

additional information about each index. The default value

is false.

No

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library.

If the database element does not include any nested
<library/> elements, the task lists the indexes at the root
library of the database.

No

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="list-indexes">

<listindexes info="true">
<database refid="MyDatabase.ref">
<library path="path/to/SomeLibrary"/>

<library path="anotherLibrary"/>
</database>
</listindexes>

</target>

<metadatafulltextindex/>
This Ant task adds a metadata full-text index to a library.

Attributes

Attribute Description Required

name The name of the index that is added. Yes

key The name of the metadata field to index. Yes

concurrent Boolean attribute that specifies whether to
create a concurrent index.

No - default is false

EMC Documentum xDB Version 10.5 Manual 347

Ant Tasks

Attribute Description Required

compressed Boolean attribute that specifies whether to
create a compressed index. This attribute is
currently only implemented for non-concurrent
indexes.

No - default is false

supportphrases Boolean attribute that specifies whether to
optimize the index to perform phrase queries.

No - default is true

leadingwildcard Boolean attribute that specifies whether to
support efficient searches with a leading
wildcard, such as in "*TERM". Using this
option can increase the size of the index
considerably.

No - default is false

supportprefixwildcard Deprecated name for leadingwildcard. Using
this option can increase the size of the index
considerably.

No - default is false

supportscoring Boolean attribute that specifies whether the use
of scoring is supported.

No - default is true

analyzer The analyzer class name. No - default is none

lowercase Boolean attribute that specifies whether to
convert the indexed terms to lower case. This
option only applies if the analyzer is left at
its default value. Queries are not case-sensitive.

No - default is true

stopwords Boolean attribute that specifies whether words
are not indexed if they are from a list of standard
English stopwords. This option only applies if
the analyzer is left at its default value.

No - default is true

includestartendtokens Boolean attribute that specifies whether to
include index support for "at start" and "at end"
XQFT filters.

No - default is false

exists What to do if an index with the same name
already exists. Accepted values are: skip - do
not create a new index, overwrite - delete the
existing index with the same name and create
the newly specified index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

versioninfo Boolean attribute that specifies whether to store
version information in the index.

No - default is false

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to which the index is

added.

No

348 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="AddMyMFTIndex">
<metadatafulltextindex name="MyMFTIndex"

key="bla">
<database refid="MyDatabase">

<library path="/MyLibrary"/>
</database>

</metadatafulltextindex>
</target>

<metadatavalueindex/>

This Ant task adds a metadata value index to a library.

Attributes

Attribute Description Required

name The name of the index. Yes

key The name of the metadata field that is indexed. Yes

concurrent Boolean attribute that specifies whether to create a

concurrent index.

No - default is false

compressed Boolean attribute that specifies whether to create a

compressed index. This attribute is currently only

implemented for non-concurrent indexes.

No - default is false

unique Boolean attribute that specifies whether to use unique keys. No - default is false

valuetype Specifies the indexed key value type, page 161. The default is string.

exists What to do if an index with the same name already exists.

Accepted values are: skip - do not create a new index,

overwrite - delete the existing index with the same name

and create the newly specified index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

versioninfo Boolean attribute that specifies whether to store version

information in the index.

No - default is false

Parameters

The following parameters can be specified as nested elements:

EMC Documentum xDB Version 10.5 Manual 349

Ant Tasks

Parameter Description Required

<database/> The database containing the library to which the index is

added.

No

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="AddMyMVIndex">

<metadatavalueindex name="MyMVIndex"
key="bla">

<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</metadatavalueindex>

</target>

<metadata/>
This Ant task can set or unset metadata (XhiveMetadataIf) on a document, library or BLOB.

Attributes

Attribute Description Required

path The path of the library child whose metadata is going to

be modified.

Yes.

key The metadata key. Yes.

value The new value of the metadata key. No.

delete Whether to delete the metadata key or not. No. This attribute can

only be set to true or

false

failonerror Specifies whether execution should stop when an index

with the specified name does not exist. The default value

is true.

No.

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library from which the index

is deleted.

No.

350 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Example

The following example change the metadata of the library child at path
"/myLib/MyOtherLib/document.xml" by setting the metadata field "sauce" to the value
"pommodoro".
<metadata key="sauce" value="pommodoro" path="/myLib/MyOtherLib/document.xml">

<database refid="test.database" />
</metadata>

<multipathindex/>

This Ant task adds a multipath index to a library child. For information about multipath indexes,
refer to Multipath indexes, page 153

Attribute Description Required

name The name of the index that is added. Yes

path The main path to be indexed. All sub-paths are made
relative to this one.

Yes

scorecustomizer The class name of an implementation of
XhiveScoreCustomizerIf.

No - default is none

analyzer The analyzer class name. No - default is none

lowercase If the attribute analyzer is not set, this attribute specifies
whether to convert the indexed terms to lower case.

No - default is true

stopwords If the attribute analyzer is not set, this attribute specifies
not to index words that are in a list of standard English
stopwords.

No - default is true

exists What to do if an index with the same name already exists.
Accepted values are: skip - do not create a new index,
overwrite - delete the existing index with the same name
and create the newly specified index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

versioninfo Boolean attribute that specifies whether to store version
information in the index.

No - default is false

Parameters specified as nested elements

EMC Documentum xDB Version 10.5 Manual 351

Ant Tasks

Parameter Description Required

<database/>, page
318

The database that contains the library where the multipath
index is added.

No

<subpath/>, page
321

Subpath configuration for this multpath index.

If no <subpath/> is included, a default subpath on
"//*" with full text seach enabled is used.

No

Example

The example below contains two nested <subpath/> elements, a nested <database/> and a nested
<library/> element.
<multipathindex name="my-multipath-index"

path="/mainXPath"
analyzer="com.emc.textanalysis"
scorecustomizer="com.emc.scorecustomize"
lowercase="false"
stopwords="false">
<database refid="databaseRef">
<library path="/existingLib" />

</database>
<subpath xpath="line"
compressed="true"
returningcontents="true"
getalltext="true"
enumerateelements="true"
startendmarkers="true"
leadingwildcard="true"
fulltextsearch="true"
valuecomparison="true" />

<subpath xpath="bar" type="int" scoreboost=".5" valuecomparison="true"" />
</multipathindex>

<parse/>
This Ant task parses files into a library. Include the <fileset/> element to indicate which files to parse.
The parse task copies the directory structure as a library structure into the target library, unless the
flatten attribute is set to true.

Attributes

Attribute Description Required

usenamespaces Boolean attribute that specifies whether to parse
namespaces.

No - default is true

352 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

validate Boolean attribute that specifies whether to validate the
files that are parsed.

No - default is false

namequery Specifies the string representing XQuery to select the
element containing the name for the new database.

No

overwrite Specifies whether to overwrite the document if it already
exists. This attribute can have the following values:

• true The existing document is overwritten.

• false The existing document is not overwritten and
the Ant task stops.

• newer The existing document in the library is
overwritten if the parsed document is newer.

No - default is newer

flatten Boolean attribute that specifies whether to flatten the
directory structure.

No - default is false

documentslock Boolean attribute that specifies whether documents in the
newly created libraries should lock with their parent. This
attribute is only relevant when the flatten attribute is set to
false.

No - default is true

lockwithparent Boolean attribute that specifies whether the newly created
libraries should lock with their parents. This attribute is
only relevant when the flatten attribute is set to false.

No - default is false

quiet Boolean attribute that specifies whether the task progress
is displayed.

No - default is false

Parameters

The following optional parameter can be specified as nested elements:

Parameter Description Required

<database/> The database to which the library with the parsed files is

added.

No

<fileset/> The set of files to parse and add to the library. No

Example
<target name="ParseInMyLibrary" depends="init">
<parse>
<fileset dir="data">
<include name="**/*.xml"/>

</fileset>
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</parse>

</target>

EMC Documentum xDB Version 10.5 Manual 353

Ant Tasks

<pathvalueindex/>
This Ant task adds a path value index to a library.

Attributes

Attribute Description Required

name The name of the index that is added. Yes

path The index path. Yes

concurrent Boolean attribute that specifies whether to create a

concurrent index.

No - default is false

compressed Boolean attribute that specifies whether to create a

compressed index. This attribute is currently only

implemented for non-concurrent indexes.

No - default is false

unique Boolean attribute that specifies whether to use unique keys. No - default is false

exists What to do if an index with the same name already exists.

Accepted values are: skip - do not create a new index,

overwrite - delete the existing index with the same name

and create the newly specified index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

versioninfo Boolean attribute that specifies whether to store version

information in the index.

No - default is false

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to which the index is

added.

No

Example

The following example contains a nested <database/> and a nested <library/> element. The index is
created with path "/foo/bar[@x<INT>]". To insert literal < and > characters into an Ant build file,
use the < > notation.
<target name="create-path-index" depends="init">
<pathvalueindex name="MyPathValueIndex" path="/foo/bar[@x<INT>]">
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</pathvalueindex>

354 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

</target>

<registerreplicator/>
This Ant task registers a replicator in a federation.

Attributes

Attribute Description Required

name The replicator name to register at the federation. Yes

Parameters

The following optional parameter can be specified as nested elements:

Parameter Description Required

<federation/> The federation where the replicator is registered. No

Example

The following example registers a replicator.
<target name="register-MyReplicator">

<registerreplicator name="MyReplicator">
<federation refid="test.federation"/>

</registerreplicator>
</target>

<renamedatabase/>
This Ant task renames a database in a federation.

This task uses the XhiveDatabaseIf.renameDatabase API call and renames the database but not the
database files. A database can be renamed safely by first using the <copydatabase/> task and later
deleting the original database.

Attributes

Attribute Description Required

destination The name of the new database. Yes

quiet Boolean attribute that specifies whether the task progress

is displayed. The default value is false.
No

Parameters

The following optional parameters can be specified as nested elements:

EMC Documentum xDB Version 10.5 Manual 355

Ant Tasks

Parameter Description Required

<database/> The name of the database to be renamed. No

Example
<target name="renamedatabase-target">
<renamedatabase destination="NewName">
<database bootstrap="MyBootstrapFile"

name="MyDatabase"
user="Administrator"
password="MyPassword" />

</renamedatabase>
</target>

<replicatefederation/>
This Ant task replicates the whole federation. This task only performs an initial duplication. It is a
simultaneous standalone backup and a restore process.

In order to move the federation to a new location, change the location of the bootstrap file. Set the
relativepath attribute set to true, because all paths in the original federation are first made relative and
then set to the directory of the new bootstrap file.

Attributes

Attribute Description Required

bootstrap The path to the new bootstrap file. By default, the path of
the original federation is used. Any relative paths in the
original bootstrap file are interpreted as relative to the new
bootstrap file.

Yes - default is null

relativepath Specifies whether all paths in the federation are relative.
By default, the original paths stored in the bootstrap file
are used.

This task can be used to restore the federation to directories
different from the original location.

Yes - default is null

quiet Boolean attribute that specifies whether the task progress
is displayed.

No - default is false

Parameters

The following optional parameters can be specified as nested elements:

Parameter Description Required

<federation/> The federation that is replicated. No

356 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

<restore/>

This Ant task restores a federation from a backup. The <restore/> task does not overwrite existing
files. To restore incremental backups, this task must be used to restore the last full backup first, then
for each incremental backup in the order they have been created. Do not restart the server during
the restore procedure.

Attributes

Attribute Description Required

file The file containing the backups. Yes

bootstrap The name of the bootstrap file to restore the backup. If no
other path is specified, the federations is restored to the
same location from which it was backed up. This task can
be used to restore a federation to a different location or
to make a copy of a federation. Any relative paths in the
original bootstrap file are interpreted as relative to the new
bootstrap file.

No - default is null

relativepath Boolean attribute that specifies that all paths in the
federation are relative. If set to false, xDB uses the original
paths that are stored in the bootstrap file. This task can be
used to restore the federation to directories different from
the original location.

No - default is false

quiet Boolean attribute that specifies whether the task progress
output is displayed.

No - default is false

Example
<target name="restore-mybackup">

<restore file="lastBackup.db" bootstrap="MyBootstrapFile" />
</target>

<serialize/>

This Ant task serializes a library child into an output file.

Attribute Description Required

file The destination file for the serialized data. Yes

quiet Suppress display of task progress. No - default is false

EMC Documentum xDB Version 10.5 Manual 357

Ant Tasks

Parameters specified as nested elements

Parameter Description Required

<database/>, page

318

The database with the nested elements to serialize. No

Example

The following example serializes data from the MyDatabase database into the file MyLibrary.xhd.
<target name="SerializeMyLibrary" depends="init">
<serialize file="c:/MyLibrary.xhd">
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</serialize>

</target>

<serialize-users/>

This Ant task serializes all users and groups of a database.

Attribute Description Required

file The destination file for the serialized users and groups. Yes

Parameters specified as nested elements

Parameter Description Required

<database/>, page

318

The database containing the users and groups to serialize. No

Example

The following example serializes the contents of the file MyLibrary.xhd.
<target name="SerializeUsers" depends="init">
<serialize-users file="c:/MyLibrary.xhd">
<database refid="MyDatabase"/>

</serialize-users>
</target>

<session/>

The session Ant task is a container task that can contain other Ant tasks. The nested tasks are executed
inside a single XhiveSession.

358 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attributes

Attribute Description Required

databaseref The reference ID of a database or federation element.

This parameter can also be provided as a nested element.

Yes

Examples

The <session/> task can contain any other xDB Ant tasks specified as nested elements. The nested
Ant tasks cannot be a combination of Ant tasks that require superuser permissions and Ant tasks that
do not require superuser permission. Ant tasks operating at the federation level require a nested
<federation/> element.
<target name="use-session" depends="init">
<session databaseref="database.RefId">
<createlibrary name="testLib"/>
<createlibrary name="testLib2"/>

</session>
</target>

<target name="use-session" depends="init">
<session>
<database refid="test.database"/>
<createlibrary name="testLib3" />
<createlibrary name="testLib4" />

</session>
</target>

<target name="test-session-fed">
<session databaseref="federation.RefId">
<createdatabase name="MyDB1" dbapassword="${password}"/>
<createdatabase name="MyDB2" dbapassword="${password}"/>
<createdatabase name="MyDB3" dbapassword="${password}"/>

</session>
</target>

<setmaxfilesize/>

The setmaxfilesize Ant task sets the maximum size of a segment data file.

Attribute Description Required

path The full path (case sensitive) of the data file (as produced

by the show-segment command).

Yes

maxsize The maximum size (in bytes) that the file is allowed to

grow to. A value of 0 means the size is unlimited.

Yes

segmentid The id of the segment to which the data file belongs. No

EMC Documentum xDB Version 10.5 Manual 359

Ant Tasks

Example

The example below sets the max file size of the newly created data file to 200000 bytes:
<target name="setFileMyMaxSize">

<addsegment segmentid="newsegment" databaseref="test.database" />
<addsegmentfile segmentid="newsegment" databaseref="test.database"

maxsize="0" /> <property name="segment.fullname"
location="..${file.separator}data${file.separator}MyDatabase2-newsegment-1.XhiveDatabase.DB"/>

<setmaxfilesize segmentid="newsegment" databaseref="test.database" path="${segment.fullname}" maxsize="200000" />
</target>

<unregisterreplicator/>

This Ant task cancels a replicator registration in a federation. Log files are no longer preserved for this
replicator.

Attributes

Attribute Description Required

name The name of the replicator for which the registration is

canceled.

Yes

Parameters

The following optional parameter can be specified as nested elements:

Parameter Description Required

<federation/> The federation where the replicator registration is

cancelled.

No

Example

The following example cancels a replicator registration.
<target name="unregister-MyReplicator">

<unregisterreplicator name="MyReplicator">
<federation refid="test.federation"/>

</unregisterreplicator>
</target>

<updatefederation/>

This Ant task updates the xDB license key of a federation. The updatefederation task closes the
xDB driver.

360 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attributes

Attribute Description Required

bootstrap The name of the the bootstrap file. Yes

password The password of the superuser. Yes

licensekey The new xDB license key. Yes

quiet Boolean attribute that specifies whether the task progress is

displayed. The default value is false.
No

Example

The following example updates the license key in the bootstrap file.
<target name="update-federation">

<updatefederation bootstrap="MyBootstrapFile"
password="secret"
licensekey="MyLicenseKey"/>

</target>

<upload/>
This Ant task uploads files into a library. To indicate which files to upload, an Ant fileset element must
be included. This task can upload DOM Documents as well as BLOBs into the database. The task
copies the directory structure as a library structure in the target library unless the flatten attribute is
set to true.

Attributes

Attribute Description Required

xmlextensions A comma-separated list of extensions that identify the
XML files to parse. The default file extension is XML.

No

usenamespaces Boolean attribute that specifies whether to parse
namespaces.

No - default is true

validate Boolean attribute that specifies whether to validate the files
that are uploaded.

No - default is false

psvi Boolean attribute that specifies whether to store PSVI
(Post Schema Validation Infoset) after validation of XML
Documents.

No - default is false

flatten Boolean attribute that specifies whether to flatten the
directory structure.

No - default is false

quiet Boolean attribute that specifies whether the task progress
is displayed.

No - default is false

EMC Documentum xDB Version 10.5 Manual 361

Ant Tasks

Parameters

The following optional parameter can be specified as nested elements:

Parameter Description Required

<database/> The database to which the library with the parsed files is
added.

No

<fileset/> The set of files to parse and add to the library. No

Example
<upload xmlextensions="xml,xhtml">

<fileset dir="${data.dir}">
<include name="fbooks/*" />

</fileset>
<database refid="MyDatabaseRef">
<library path="/testLib" />

</database>
</upload>

<valueindex/>
This Ant task adds a value index to a library.

Attributes

Attribute Description Required

name The name of the index that is added. Yes

elementURI The URI of the element to index. Yes

elementName The name of the element to index. This attribute is required

if the attributeName

attribute value is null.

attributeURI The URI of the attribute to index. Yes

attributeName The name of the attribute to index. Required if the value

of the elementName

attribute value is null.

concurrent Boolean attribute that specifies whether to create a

concurrent index.

No - default is false

362 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

Attribute Description Required

compressed Boolean attribute that specifies whether to create a

compressed index. This attribute is currently only

implemented for non-concurrent indexes.

No - default is false

unique Boolean attribute that specifies whether to use unique keys. No - default is false

valuetype Specifies the indexed element type. The default value

is string. The valuetype attribute can have the value
string, int, long, double, float, date, date_time, time,
day_time_duration, and year_month_duration.

No

exists What to do if an index with the same name already exists.

Accepted values are: skip - do not create a new index,

overwrite - delete the existing index with the same name

and create the newly specified index, fail - fail the Ant task.

No - default is skip

quiet Specifies whether to display task progress. No - default is false

versioninfo Boolean attribute that specifies whether to store version

information in the index.

No - default is false

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to which the index is

added.

No

Example

The following example contains a nested <database/> and a nested <library/> element.
<target name="AddMyValueIndex" depends="init">

<valueindex name="MyValueIndex"
elementURI="http://www.x-hive.com/ns"
elementName="title">

<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</valueindex>

</target>

<xquery/>

EMC Documentum xDB Version 10.5 Manual 363

Ant Tasks

This Ant task executes an XQuery in the context of a library. The query results can be stored in an Ant
property, written to a file, or logged in the Ant build. The query must be given using a nested <query/>
element, XQuery external variables can be set using nested <param/>s.

Attributes

Attribute Description Required

outputfile A file to write the result of the XQuery to. No

outputproperty A property to store the XQuery result in. No

By default (if neither outputfile nor outputproperty is
specified), query results are logged in the Ant build.

Parameters

The following parameters can be specified as nested elements:

Parameter Description Required

<database/> The database containing the library to which the index is
added.

Yes

<query/> The query to run, either specified as text within the
<query/> element, or as a file referenced through the file
attribute. Ant properties in the element content will be
expanded. Special XML characters need to be escaped, it
is recommended to wrap element contents in a CDATA
section (see example below).

Yes

<param/> A parameter to a declare variable in the XQuery. Attributes
namespace, name, and value. Ant properties will be
expanded in the value.

No

Example

The following example runs an xquery wrapped in a CDATA section, and stores the result in a
property. The xquery takes an external variable ($addressee), which is supplied with a <param/>
element, which in turn uses an Ant property. The library is specified by a nested <database/> element
with a nested <library/> element.
<target name="run-my-xquery" depends="init">

<propert name="greeting.name" value="World"/>

364 EMC Documentum xDB Version 10.5 Manual

Ant Tasks

<xquery outputproperty="xquery.result">
<query><![CDATA[
declare variable $addressee external;
’Hello, ’, $addressee]]></query>

<param name="addressee" value="${greeting.name}"/>
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</xquery>

</target>

Example

This example loads the query from a file and stores the result in a file.
<target name="run-my-xquery-file" depends="init">

<propert name="greeting.name" value="World"/>
<xquery outputfile="/tmp/xquery-out.txt">

<query file="query.xq"/>
<param name="addressee" value="${greeting.name}"/>
<database refid="MyDatabase">
<library path="/MyLibrary"/>

</database>
</xquery>

</target>

EMC Documentum xDB Version 10.5 Manual 365

Index

A
abstract schema, 126
Abstract schema, 44
admin client
creating database, 230
importing data
filter, 234

superuser password, 232–233
Admin Client, 41
administration client
adding indexes, 241
deserializing data, 238
deserializing users, 239
editing documents, 240
exporting data, 235
restoring data, 236
running queries, 241
serializing data, 237
serializing users, 239
starting, 228

Ant
tasks, 317
types, 322

Ant type, 318
architecture, multi-node, 297
ASmodel, 44
attach, 274

B
backend server, 297
background server
starting on Unix, 70

backup, 271
header, 266, 270
incremental, 263
info, 266, 270
restoring, 262
snapshot, 266
standalone, 263

backup method
online, 268

backup() method, 269
backups, 262, 268, 270
begin() method, 142
binary large objects, 45
<binding_server> element, 301
BLOB
storing, 39

bootstrap, 42, 66, 69
xhive-ant, 318

bootstrap file, 69
multi-node configuration, 299

branching, 41
methods, 124

C
catalog, 221, 224
adding models, 222

change identity
non-primary node, 314
primary node, 315

checkpoint, 87
checkpoint() method, 142
client, 38
Client.lax file, 68
cold backup, 262, 268
command
xdb admin, 62
xdb backup, 62, 263
xdb backup-library, 268
xdb configure-federation, 62
xdb create-database, 62
xdb create-federation, 62, 250
xdb delete-database, 62
xdb info, 62
xdb restore, 62, 264
xdb run-server, 62
xdb run-server on Unix, 70
xdb stop-server, 62
xdb suspend-diskwrites, 62

command-line client
interactive console, 247
options, 247
xdb command, 246

command-line client commands, 248
command-line settings, 66
commit() method, 142
concurrent index, 167–168
configuration file, 46, 230
binding_server, 301
file, 232
node, 301
segment, 231
xhive-clustering, 231

configuration files, 68
connect() method, 142
consistency check, 283–284
context conditioned index, 168
creating, 169

context parsing, 100
createDatabase() method, 84
createSession() method, 141

D
data
deserializing , 238
exporting, 235
importing, 234
restoring, 236
restoring from log file, 265
serializing, 237

database, 42

EMC Documentum xDB Version 10.5 Manual 367

Index

BLOBs, 45
catalogs, 44
checking consistency, 284
configuration file, 46
connecting, 85, 271
creating, 42, 62
documents, 44
files, 46
groups, 44
indexes, 44
libraries, 44
referencing objects, 144
segments, 45
superuser, 42
users, 44

database configuration, 86
dedicated page server, 70
dedicated page server program, 92
detach, 274
detach point, 47
detachable
library, 274

detachable library, 272
unusable, 275

disconnect() method, 143
distributed deadlock, 305
document
branching, 41
creating, 108
exporting, 120, 239, 272
linking, 40
normalizing, 102
parsing, 99
parsing with context, 100
publishing
PDF, 121
using XSLT, 121

retrieving, 109
by ID, 111
by library path, 112
by name, 111
previous versions, 124
using indexes, 112
using XQuery, 112

storing, 103
traversing, 116
using DOM, 116
using function objects, 119

validating, 101, 224
XQuery access, 178

documents
editing, 240

DOM
configuration, 103
retrieving documents, 110
support, 39

DTD
managing, 71

troubleshooting, 72

E
element name index, 167
element name index example, 167
exporting
documents, 239, 272
libraries, 239, 272

external editors, 71

F
failover, 294
federation, 42
creating, 250
creating replica, 290, 293
log, 43
read-only, 281
replicating metadata, 291
sets, 281
creating, 282
using, 92, 282

file system performance, 77
files, 46
fips, 67
FTP, 71
full-text index, 163
create, 164

full-text queries, 195
anyall options, 197
Boolean queries, 202
cardinality option, 198
limitations, 195
positional filters, 197
score calculation, 199
score variables, 198
thesaurus, 196
thesaurus handler, 196
wildcards, 195
xhive:fts function, 201

functions
external, 177

G
group
managing, 47, 90

H
high-availability, 314
host replacement, 314
hot backup, 262, 268

368 EMC Documentum xDB Version 10.5 Manual

Index

I
ID attribute index, 166
id collision, 274
incremental backup, 262–263, 268
index, 153–154, 160–161
adding, 241
concurrent, 167–168
context conditioned, 168
element name, 167
full-text, 163–164
ID attribute, 166
ignoring, 170
library, 165
library ID, 165
library name, 165
live, 150
metadata full text, 164
metadata value, 164
optimizing performance, 170
path, 151
query performance, 150
scope, 170
selectivity, 170
types, 150
using with XQuery, 188
value, 161–162

J
JAAS, 97
Java, 49
Java command line
classpath, 50

JDK, 49
join() method, 143

K
keep-log-files, 43, 263

L
lazy replication, 289
leave() method, 143
library
backing up, 267
using API, 269

creating, 88
detach point, 46
detachable, 46, 272
exporting, 239, 272
ID index, 165
index, 165
metadata, 126
name index, 165
restoring
using API, 269

root, 44
unusable, 275
XQuery access, 178

locking
context, 133
namebase, 134

locking context, 133
locking rules
multi-node configuration, 305

log, 42
log files, 43
lucene, 67
lucene blobs, 153

EMC Documentum xDB Version 10.5 Manual 369

Index

M
master, 289
memory, 66
message logging, 287
java.util.logging, 286

message logging areas, 287
metadata
backup, 266, 270
indexing, 191
replicating, 291

metadata full text index, 164
metadata value index, 164
model
adding, 222
linking, 222

models, 44
monitoring
statistics, 277–278

move, 274
multi-node architecture, 297
multi-node configuration
API examples, 310
applications, 306
bootstrap file, 299
node server, 297
primary server, 297
upgrade, 301

multi-node locking rules, 305
multipath index, 153–154, 160–161
Lucene segment, 153
merge, 156
specification, 155
sub-index, 153

Multipath Index Limitations, 160
multipath index merge
performance, 156

N
namebase, 134
naming convention, 274
node identity
changing, 314

node identity change, 314
node versioning, 125
non-XML data, 106

O
offline backup, 262, 268
onine backup, 262, 268
online backup method, 268
OSGi, 96

P
page cache, 57
page server, 38, 297
configuring, 70

page server port, 56
Page server settings, 67
parallel queries, 215
parsing, 223
path index, 151
specification, 152

performance
cachepages, 75
configuring JVM and
cache pages, 75

disabling disk-write caches, 78
file system, 77
internal server, 75
multiple disks, 77
page size, 77
parallel queries, 215
using indexes, 192
XQuery tuning, 204

primary copy replication, 289
primary server, replacing, 315
property
xhive.bootstrap, 69

PSVI, 194, 224
PSVI information, 225

Q
queries
running, 241

query
preparing, 217

queryable, 125
quick start, 35

370 EMC Documentum xDB Version 10.5 Manual

Index

R
RAM segment, 281
range queries, 191
read-only federations, 281
read-only transactions, 148
rename, 274
replica
creating, 290, 293

replication
lazy primary copy replication, 289
moving master, 292
removing replica, 292
running replicator, 291
using as failover, 294

REST API, 246
restore() method, 269
restoring
from log file, 265

restoring backups, 262
rollback() method, 142
RPC tracing, 78
console, 80
file, 80
session level, 81
system level, 80

S
sample
running, 84

scope, 86
score customization, 161
search
versions, 125

segment
temporary, 46

segments, 45
serialization, 239, 272
server, 38, 56
Server.lax file, 68
session, 86
sessions, 133–134
connect() method, 142
createSession() method, 141
disconnect() method, 143
join() method, 143
joined, 136
leave() method, 143
lifecycle, 134
locking conflicts, 146
pools, 136
terminate() method, 143
transaction isolation, 146

slave, 289
snapshot backup, 262, 266, 268
SSL, 283
standalone backup, 262, 268
statistics, 277–278
superuser, 42

T
temporary data, 46
terminate() method, 143
terms, 201
trace file properties, 80
tracing
RPC, 78

transaction log, 289
transaction recovery
multi-node, 299

transactions, 86, 134
begin() method, 142
checkpoint() method, 142
commit() method, 142
distributed deadlock, 305
locking, 133
namebase and locking, 134
read-only, 148
rollback() method, 142

EMC Documentum xDB Version 10.5 Manual 371

Index

U
Unix
background server, 70

unusable detachable library, 275
upgrade
multi-node configuration, 301

user
managing, 47, 90

users
deserializing , 239
serializing, 239

V
validated parsing, 223
value index, 161–162
type, 161

versioned document, 123
versioning, 123
node, 125

versions
search, 125

W
web client, 246
Windows service, 56

X
xDB
commands, 61
features, 37
installing on UNIX, 59
installing on Windows, 50
uninstalling, 61

xdb admin command, 62, 228
xdb backup command, 62, 263
xdb backup-library command, 267–268
xdb command
syntax, 247

xdb configure-federation command, 62
xdb create-database command, 62, 251
xdb create-federation command, 62, 250
xdb delete-database command, 62
xdb info command, 62, 148, 251
xdb restore command, 62, 264
xdb restore-library command, 267
xdb run-server command, 62
xdb run-server command on Unix, 70
xdb stop-server command, 62
xdb suspend-diskwrites command, 62
xdb.properties file, 66
xhive-ant
run java samples, 84

xhive.bootstrap property, 69

xhive-ant, 318
xhive:fts function extends XQuery, 201
XHIVE_HOME, 67
XhiveGroupIf, 91
XhiveGroupIf interface, 91
XhiveGroupListIf, 91
XhiveGroupListIf interface, 91
XhiveUserIf interface, 90
XhiveUserListIf interface, 90
XLink, 40, 122
XQuery, 39
accessing documents and libraries, 178
collation support, 208
collection(), 178
data model, 213
doc(), 178
error reporting, 178
extending using Java, 218
extension expressions, 179
extension function xhive:highlight, 186, 188
extension functions, 182
external variables, 175
full-text queries, 194
full-text support, 208
implementation, 199
instance methods, 218
Java objects, 218
limitations, 219
methods, 173
modules, 209
multiple indexes, 191
name element index, 189
namespace declarations, 213
options, 179
parallel queries, 215
preparing queries, 217
proprietary extensions, 193
range queries, 191
security, 209
security policy, 209
supported, 207
type checking, 219
unsupported, 207
updates, 211
using, 173
using indexes, 188
using type information, 194
using type information sample, 215
value index, 189
XML Schema, 210

XQuery collation support
java, 206

372 EMC Documentum xDB Version 10.5 Manual

	Preface
	xDB Documentation
	Support information
	Typographic conventions
	Revision History
	Known issues and limitations

	Quick Start
	Getting a quick start with xDB

	Introduction
	xDB Overview
	General features
	Linking documents with XLink
	Versioning and branching
	Administration tools
	Logical architecture
	Superuser
	Transaction log files
	Database objects

	Internal structure: databases, segments, files and pages
	Database files
	Database configurations

	Detachable libraries
	Managing users and groups

	Installing xDB
	Pre-installation requirements
	Installing xDB on a Windows platform
	Upgrading xDB on Windows
	Installing xDB on a UNIX platform
	Upgrading xDB on UNIX
	Uninstalling xDB
	Verifying the xDB installation
	Creating a sample database

	Configuring xDB
	 The xdb.properties file
	Configuration files for Windows
	xDB JAR files
	Using the xhive.bootstrap property
	The xDB dedicated page server
	Running a background server process on UNIX
	Running without a dedicated server

	Using external editors with FTP
	Managing DTDs
	Troubleshooting DTDs

	Enabling FIPS 140-2 Level 1 Encryption

	Optimizing Performance
	Improving server performance
	Configuring JVM and cache pages
	Choosing the database page size
	Linux file system performance
	Using multiple disks
	Disabling disk-write caches
	RPC tracing
	Enabling or disabling RPC tracing
	Enabling RPC tracing at system level
	Sending RPC trace output to console or file
	Methods for RPC tracing
	RPC Trace XML schema example

	Creating Applications
	Building and running applications
	Running a sample
	Creating a database using the API
	Connecting to a database
	Getting a database configuration
	Using sessions and transactions
	Creating libraries
	Storing BLOBs
	API methods for managing users and groups
	Using a RAM segment for temporary data
	The xDB dedicated page server program
	Using the FederationSet API
	Using xDB with Maven 2
	Using xDB with Spring
	xDB and OSGi
	Using xDB with JAAS
	Using the API with SSL

	Managing Documents in Applications
	Creating and managing documents
	Parsing XML documents
	Parse with context

	Validating XML documents
	Normalizing XML documents

	Storing XML documents
	DOM configuration settings
	Importing non-XML data
	Creating a document
	Retrieving documents and document parts
	Using DOM operations
	Using document ID
	Using document name
	Using XQuery
	Using indexes
	Using XPointer with library path
	Using XPath and XPointer

	Traversing XML documents
	Using DOM traversal
	Traversing using function objects

	Exporting XML documents
	Publishing XML documents
	XLink interfaces
	Using versioning
	Working with versioned documents
	Retrieving previous document versions
	Branching methods
	Node-level versioning

	Using searchable versions
	Using metadata on library children
	Using abstract schemas
	Using the APIs for XSL transformations

	Session and Transaction Management
	Sessions, transactions and locking
	Namebase and locking
	Session lifecycle
	Joined sessions and session pools
	Sessions and references to database objects
	XhiveDriverIf.createSession()
	connect()
	begin()
	checkpoint()
	commit()
	rollback()
	disconnect()
	terminate()
	join()
	leave()

	Referencing database objects in sessions
	Multithreaded session handling
	Transaction isolation in sessions
	Managing locking conflicts
	Read-only transactions
	Getting info on sessions and locks

	Managing Indexes
	Indexes
	Index APIs and samples
	Path indexes
	Path index specification

	Multipath indexes
	Multipath index examples
	Sub-path specification
	Differences between multipath and path indexes
	Multipath index merge
	Multipath index properties
	Multipath index limitations

	Multipath indexing methods
	Customizing the score of multipath indexes

	Value indexes
	Using value types for value indexes

	Value indexing methods
	Full-text indexes
	Full-text indexing methods
	Metadata value indexes
	Metadata full text indexes
	Library indexes
	Library indexing methods
	ID attribute indexes
	ID attribute indexing methods
	Element name indexes
	Element name indexing methods
	Concurrent indexes
	Concurrent indexing methods
	Non-blocking incremental indexes
	Context conditioned indexes
	Context conditioned indexing methods
	Optimizing index performance
	Indexes and timezones

	XQuery
	Working with XQueries
	Working with XQuery methods
	External XQuery variables and functions
	Accessing documents and libraries with XQuery
	XQuery error reporting
	XQuery options and extension expressions
	XQuery extension functions
	Using XQuery extension function xhive:force
	Using XQuery extension function xhive:highlight

	Using indexes in XQuery
	Value and name element indexes
	Range queries
	Indexing metadata
	Multiple indexes
	Indexes and order by

	Proprietary XQuery extension to order by
	Using type information in XQuery
	XQuery full-text search
	Full-text search limitations
	Full-text logic operators
	Queries with wildcards
	Queries with fuzzy search
	Queries with thesaurus
	Queries with thesaurus handler
	Anyall options
	Positional filters
	Cardinality option
	Score variables
	Score calculation
	Boost scoring models
	Using boost scoring models

	Using the xhive:fts full-text search function
	XQuery performance tuning
	XQuery collation support
	XQuery Profiler
	XQuery profiling methods
	XQuery implementation
	XQuery Security Features
	XQuery security methods
	XQuery modules
	XQuery XML Schema support
	XQuery Update Syntax
	Proprietary XQuery Update Syntax
	Data model differences
	Additional XQuery namespace declarations

	More methods for XQuery
	Use of type information in XQuery
	Parallel queries
	Using the XQuery Resolver
	Preparing XQueries
	Extending XQuery using Java
	Java objects and instance methods
	Type checking
	Limitations

	Catalogs and Validation
	xDB catalogs
	Adding models to a catalog
	Linking models to documents
	Validated parsing
	Catalog methods
	Validating documents against models
	Post Validation Schema Infoset (PSVI)
	Accessing PSVI information

	Administering xDB
	Admin Client
	Using the xDB Admin Client
	Creating a database using the Admin Client
	Database configuration files
	<xhive-clustering/>
	<segment/>
	<file/>

	Changing the superuser password using the Admin Client
	Changing the administrator password using the Admin Client
	Changing a user password using the Admin Client
	Importing data
	Exporting data
	Backing up a federation
	Restoring a federation backup
	Serializing data
	Deserializing data
	Deserializing the root library
	Serializing users and groups
	Deserializing users and groups
	Comparison of online backup and serialization
	Editing documents
	Adding indexes
	Running queries
	Profiling XQueries

	Web client
	Using the command-line client
	Command-line client commands
	Creating a federation
	Creating a database using the command line
	The xdb info command
	Command-line client gobal options
	Server-related commands
	Library-related commands
	General commands

	Creating and restoring backups
	Running incremental backups
	The xdb backup command
	The xdb restore command
	Restoring lost data from log files
	Viewing backup metadata
	Offline backups
	Suspending xDB activity for snapshot backups
	Backing up and restoring a library
	Commands for backing up and restoring a library
	Methods for creating and restoring backups
	Using the backup() method
	Using the restoreFederation() method
	Using the library backup() method
	Using the restoreLibrary() method

	Connecting to a federation backup

	Managing detachable libraries
	Moving a detachable library
	Unusable detachable libraries

	Duplicated transaction log files
	Methods for transaction log duplication

	Monitoring statistics
	Enabling statistics monitoring
	Consuming monitored xDB statistics
	Monitored statistics categories

	RAM segments
	Read-only federations
	Federation sets
	Creating a federation set
	Using federation sets

	Using Secure Sockets Layer (SSL)
	Checking database consistency
	Methods for consistency checking

	Message logging
	Message logging areas
	Message logging framework
	Replicating Federations
	Replication
	Creating a federation replica
	Running a replicator on a dedicated server
	Replication of federation metadata
	Changing a replica into a master
	Removing a replica
	Methods for replication
	Methods for using a federation replica
	Running a replicator on an internal server
	Read-only transactions with temporary data
	Using a replica as a failover
	Preparing for replication
	Replication application code sample

	Configuring Multiple Backend Servers
	xDB multi-node architecture
	Transaction recovery
	Multi-node bootstrap configuration
	Server upgrade from older xDB release
	<node/>
	<binding_server/>

	Multi-node considerations
	Multi-node run-time restrictions
	Managing nodes
	Methods for multi-node deployment
	Methods for managing nodes
	Locking rules
	Disabling distributed deadlock detection
	Modifying library bindings
	Applications for multiple-node configurations
	Multiple-node API examples
	Replacing a server
	Replacing a non-primary node
	Changing node identity
	Replacing a primary node

	Ant Tasks
	Using xDB Ant tasks
	Using the xhive.bootstrap property with Ant
	xDB Ant type reference
	<database/>
	<document/>
	<federation/>
	<group/>
	<library/>
	<subpath/>
	<user/>

	Referencing xDB Ant types
	xDB Ant task reference
	<addgroup/>
	<addsegmentfile/>
	<adduser/>
	<backup/>
	<batchindexadder/>
	<checkdatabase/>
	<checkfederation/>
	<checklibrarychild/>
	<checknode/>
	<closedriver/>
	<copydatabase/>
	<createdatabase/>
	<createfederation/>
	<createlibrary/>
	<deletedatabase/>
	<deletegroup/>
	<deleteindex/>
	<deletelibrary/>
	<deleteuser/>
	<deserialize/>
	<deserialize-users/>
	<elementindex/>
	<exportlibrary/>
	<fulltextindex/>
	<idattributeindex/>
	<libraryidindex/>
	<listindexes/>
	<metadatafulltextindex/>
	<metadatavalueindex/>
	<metadata/>
	<multipathindex/>
	<parse/>
	<pathvalueindex/>
	<registerreplicator/>
	<renamedatabase/>
	<replicatefederation/>
	<restore/>
	<serialize/>
	<serialize-users/>
	<session/>
	<setmaxfilesize/>
	<unregisterreplicator/>
	<updatefederation/>
	<upload/>
	<valueindex/>
	<xquery/>

	Index

