
EMC® Documentum®

XDS Registry
Version 1.9

Installation Guide

EMC Corporation
Corporate Headquarters

Hopkinton, MA 01748-9103
1-508-435-1000
www.EMC.com

Legal Notice

Copyright © 2010-2016 EMC Corporation. All Rights Reserved.

EMC believes the information in this publication is accurate as of its publication date. The information is subject to change
without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATIONMAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KINDWITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY
DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an applicable software license.

For the most up-to-date listing of EMC product names, see EMC Corporation Trademarks on EMC.com. Adobe and Adobe PDF
Library are trademarks or registered trademarks of Adobe Systems Inc. in the U.S. and other countries. All other trademarks
used herein are the property of their respective owners.

Documentation Feedback

Your opinion matters. We want to hear from you regarding our product documentation. If you have feedback
about how we can make our documentation better or easier to use, please send us your feedback directly at
ECD.Documentation.Feedback@emc.com

Table of Contents

Revision History .. 7

Chapter 1 About XDS Registry Server ... 9
Overview ... 9
Architecture ... 9
Workflow... 10
Endpoints .. 14

Chapter 2 Features .. 17
ITI-8 Patient Identity Notifications ... 17
New Patient Identity Notification .. 17
Merge Patient Identities Notification.. 18

XDS Registry Transactions .. 20
Trusted Host ITI-18 Endpoint .. 20
Patient Privacy Policy Enforcement.. 21
XDS Registry DSUB Notifications .. 22
Customization.. 22
Business Continuance ... 22
Load Balancing and Scalability .. 23
Data Backup and Recovery.. 23
High Availability and Disaster Recovery .. 23

Usage Reporting... 24

Chapter 3 Before You Install .. 25

Chapter 4 Pre-installation Tasks .. 27
Setting up the Documentum xDB Healthcare Database 27
Installing the Dependent Libraries ... 27
Obtaining the Dependent Libraries .. 28
Bundling the Dependent Libraries ... 29

Chapter 5 Configuring HIP XDS Registry ... 31
Configuring the Server Directory ... 31
Creating the HIP Configuration Directory .. 31
Deploying the Property Files in the HIP Configuration Directory..................... 32
Securing the Registry Properties File.. 32

Enabling Remote xDB Instance Support ... 33
Configuring the Registry Properties File... 33
Configuring the Registry Property ... 33
Configuring the Documentum xDB Properties.. 34
Configuring the HADR Properties ... 34

Configuring the Registry Configuration File Properties 39

3

Table of Contents

Configuring the MLLP Parameters... 39
Configuring the Custom SOAP Routes Properties... 41
Configuring the Request and Response Validator Properties............................ 42
Configuring the IHE Endpoint for Trusted Hosts .. 43
Configuring the HTTPS Properties... 43
Configuring the ATNA Properties ... 44
Configuring the XUA Properties.. 44
Configuring the XUA Policy .. 45
Configuring the XUA SAML Attribute Values .. 45
Configuring the XUA Attribute Validation Property 46
Configuring the Trusted Assertion Provider Properties 46

Configuring the PPIC Properties.. 46
Configuring the Usage Report Properties ... 47
Configuring the Unified Endpoint Properties ... 47
Configuring Registry as DSUB Notification Publisher 48
Configuring the RabbitMQ Properties.. 48

Configuring the Registry Configuration File ... 49
Configuring the HIP PPIC Mapping Properties File .. 50
Configuring the Web Container Heap Memory... 51
Configuring the Trusted Hosts... 51
Configuring SSL ... 52
Configuring SSL for Tomcat .. 52
Configuring SSL for WebLogic .. 52

Chapter 6 Installing the XDS Registry Server .. 55
Deploying the HIP Registry WAR File on Windows .. 55
Deploying the HIP Registry WAR File Using Tomcat 55
Deploying the HIP Registry WAR File Using WebLogic................................... 55

Deploying the HIP Registry WAR File on Linux.. 56

Chapter 7 Verifying the Installation .. 59
Verifying the Installation Using Tomcat.. 59
Verifying the Installation Using WebLogic.. 59

Chapter 8 Upgrading HIP XDS Registry ... 61
Upgrading XDS Registry from Version 1.8 to 1.9 ... 61

Chapter 9 Troubleshooting .. 63
Log Settings ... 63
Log Description.. 63
Log Management and Retrieval ... 63

Issues and Resolutions .. 64
Context Initialization Failing when Deploying the Server WAR Files................ 64

Problem ... 64
Problem ... 64
Cause .. 65
Resolution.. 65

Cannot Connect to the XDS Registry Server.. 65
Problem ... 65
Cause .. 65
Resolution.. 65

Cannot Access the xDB Server ... 66
Problem ... 66
Cause .. 66

4

Table of Contents

Resolution.. 66
Java Errors at Startup .. 66
Problem ... 66
Cause .. 66
Resolution.. 67

XUA Policy File Error ... 67
Problem ... 67
Cause .. 67
Resolution.. 67

servicesstore.jks File Not Found Error .. 67
Problem ... 67
Cause .. 68
Resolution.. 68

Must Understand Headers Error.. 68
Problem ... 68
Cause .. 68
Resolution.. 68

java.lang.OutOfMemoryError: PermGen space error....................................... 69
Problem ... 69
Cause .. 69
Resolution.. 69

Required Header Not Present Error ... 69
Problem ... 69
Cause .. 70
Resolution.. 70

Unable to Connect to Documentum xDB .. 70
Problem ... 70
Cause .. 70
Resolution.. 70

o.s.web.context.ContextLoader - Context Initialization Failed 71
Problem ... 71
Cause .. 71
Resolution.. 72

CannotLoadBeanClassException: Error loading class...................................... 72
Problem ... 72
Cause .. 73
Resolution.. 73

Apache Camel Shutting Down .. 73
Problem ... 73
Cause .. 74
Resolution.. 74

Appendix A Sample Configuration Files ... 75
registry.properties .. 75
registry-config.xml ... 81
hip-ppic-mapping.properties... 81

5

Table of Contents

6

Revision History

Revision Date Description

February 2016 Initial publication.

7

Preface

8

Chapter 1
About XDS Registry Server

This chapter provides an overview of Cross-enterprise Document Sharing (XDS) Registry Server, its
architecture, workflow, and endpoints.

Overview
The XDS Registry Server provides a central directory for a healthcare community that contains
information about patient healthcare records. The registry does not store the records themselves,
but instead contains information about each record, such as the patient ID, the document type, the
physician name, the procedure involved, and the location of the record. Healthcare providers query
the registry to obtain a list of patient healthcare records and their locations.

Architecture
The HIP XDS Registry consists of the following components:
• HIP XDS Registry Server

• xDB

The XDS Registry Server is a J2EE web application built on the Apache Camel open-source routing
and mediation framework. It queries and retrieves XML metadata from the Documentum xDB
healthcare database.

The Documentum xDB healthcare database stores registry data in the /registry/objects library,
and the XDS Registry Server configuration file in the /registry library. The server environment
properties for the XDS Registry Server are stored in registry.properties file, which resides on
the server in the HIP configuration directory.

9

About XDS Registry Server

The following figure shows the XDS Registry Server architecture:

The top layer contains XDS Registry Request processors that handle and process the Registry SOAP
request messages. These processors handle messages for registering patient records and for retrieving
the patient record metadata from the XDB database.

The second layer contains healthcare components from the Open eHealth Integration Platform (IPF).
These are Apache Camel specific components for the XDS Registry that include request validators,
SOAP components, and message convertors.

The third layer contains the general application framework which includes Apache Camel, Apache
CXF and Spring. Apache CXF is an Apache Camel component that handles message requests formats
from a wide variety of formats. This layer also uses the Spring ApplicationContext to provide
configuration properties to the application.

The fourth layer consists of the Documentum xDB healthcare database on a Documentum xDB server.

Workflow
The XDS Registry Server is a component of the HIP XDS Archive. It can be paired with the HIP XDS
Repository Server or any Integrating the Healthcare Enterprise (IHE)-enabled XDS Repository. The
registry implements the IHE XDS.b Profile registry actor which enables you to share healthcare
records with the hospitals and organizations that comprise your healthcare community.

A healthcare community consists of different healthcare consumers and providers that need to access
and share a patient’s Healthcare records. Healthcare records include administrative records (patient
information) and patient medical records (X-rays, doctor reports, lab results).

There are many potential consumers and providers in a healthcare community, some common
examples are: hospitals, physician’s offices, labs, pharmacies, insurance companies, and Picture
Archiving and Communications Systems (PACS).

10

About XDS Registry Server

The following figure shows a few examples of consumers and providers in a healthcare community:

Healthcare providers create patient identities and supply that information to the registry through
Patient Identity Feed transactions.

The following figure shows the Patient Identity Feed transactions:

Healthcare providers submit new Healthcare records to an XDS Repository through the XDS
Repository Server with the Provide and Register Document Set transaction. The XDS Repository
Server stores the submitted Healthcare records in the XDS Repository.

11

About XDS Registry Server

The following figure shows the Provide and Register Document Set transaction:

The XDS Repository Server then automatically registers the relevant document metadata with the
XDS Registry with the Register Document Set transaction. Registering a healthcare record with the
XDS Registry enables other healthcare providers to find the record.

The following figure shows the registration of document metadata.

When healthcare providers need to obtain a patient’s healthcare records, they query the registry
with the Registry Stored Query request. The registry provides the location of the healthcare record.
Healthcare providers operate as a Document Consumer when querying the XDS Registry.

12

About XDS Registry Server

The following figure shows the process of querying the registry:

Document Consumers can then retrieve the content from the Repository using the Retrieve Document
Set transaction.

The following figure shows the Retrieve Document Set transaction:

13

About XDS Registry Server

Endpoints
The following table lists the endpoints for the XDS Registry Server:

IHE Transaction Description Endpoint

ITI-8 Patient Identity Feed HL7 v2.3.1 MLLP://<host>:<port>

ITI-18 Registry Stored Query

Registry Stored
Query–Asynchronous

Registry Stored Query–Trusted
host access-only

HTTPS://<host>:<port>/registry/services/xds
-iti18

HTTPS://<host>:<port>/registry/services/xds
-iti18as

HTTPS://<host>:<port>/registry/services
/trustedhosts/xds-iti18

ITI-42 Register Document

Register
Document–Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti42

HTTPS://<host>:<port>/registry/services/xds
-iti42as

ITI-44 Patient Identity Feed HL7 v3 HTTPS://<host>:<port>/registry/services/xds
-iti44

ITI-51 Multi-Patient Registry Stored
Query

Multi-Patient Registry Stored
Query–Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti51

HTTPS://<host>:<port>/registry/services/xds
-iti51as

ITI-61 Register On-Demand Document

Register On-Demand
Document–Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti61

HTTPS://<host>:<port>/registry/services/xds
-iti61as

ITI-57 Update Document

Update
Document–Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti57

HTTPS://<host>:<port>/registry/services/xds
-iti57as

ITI-62 Delete Document

Delete
Document–Asynchronous

HTTPS://<host>:<port>/registry/services/xds
-iti62

HTTPS://<host>:<port>/registry/services/xds
-iti62as

14

About XDS Registry Server

For client applications such as XDS consumers that support only single endpoint for XDS operations,
HIP provides an additional single SOAP endpoint for IHE transactions. This additional endpoint
dispatches request to original endpoint (as defined in SOAPEndpointRouteBuilder) based on the
SOAP operation name in the request.

The following table lists the single endpoints (applicable for both http and https) provided by the
XDS Registry Server for ITI-42 and ITI-18 transactions:

Type of Operation Unified Endpoint URL Supported Transactions

Synchronous
operations

http://<host:port>/registry/services
/xds-reg-svc

• ITI-42: http://<host:port>/registry
/services/xds-iti42

• ITI-18: http://<host:port>/registry
/services/xds-iti18

Asynchronous
operations

http://<host:port>/registry/services
/xds-reg-svc-as

• ITI-42as: http://<host:port>
/registry/services/xds-iti42as

• ITI-18as: http://<host:port>
/registry/services/xds-iti18as

15

About XDS Registry Server

16

Chapter 2
Features

This chapter describes the features of XDS Registry Server.

ITI-8 Patient Identity Notifications
ITI-8 Patient Identity Feed is the transaction in which a Patient Identity Source sends a message
to the Patient Identity Cross Reference Manager and Document Registry whenever a patient is
admitted, pre-admitted, registered, or when the patient demographic data is modified.

The Patient Identity Feed transactions are done by the HL7 ADT messages.

The following are the HL7 Versions supported for inbound ADT messages:
ADT^A34(V23),ADT^A40(V231,V24,V25,V251)

For inbound messages, XDS Registry supports only the Merge Patient Identity notification (ADT^A40)
and simple MDM messages for new document notifications.

The Registry Server listens to the ITI-8 Patient Identity feeds through two Minimal Lower Layer
Protocol (MLLP) ports, one secure and the other, non-secure. The HTTPS properties must be set if
you want to enable secure HTTPS MLLP port.

You must edit the registry.properties file to configure these ports.

New Patient Identity Notification

The following are the New Patient Identity Notifications that a Patient Identity Source triggers
whenever an Admit/Register or an Update event occurs:
• A01: Admission of an inpatient into a facility

• A04: Registration of an outpatient for a visit of the facility

• A05: Pre-admission of an inpatient (that is, registration of patient information ahead of actual
admission)

• A08: Update to an existing patient record

17

Features

Merge Patient Identities Notification

The Patient Identity Source generates theMerge Patient–Internal ID notification denoted by
(ADT^A40) whenever two patient records are merged. Two records are merged when they reference
the same patient in the Patient Identifier Domain. The Patient Identity Source sends the generated
Merge Patient - Internal (A40) message to Patient Identifier Cross-reference Manager and Document
Registry.

Message Segments:

An ADT Patient Merge (ADT^A40) message consists of the following segments:
• MSH—Message Header

• EVN—Event Type

• PID—Patient Identity Information

• MRG—Merge Patient Information

• PV1 (optional)—Patient Visit Information

For Patient Identity Merge, the main segments, fields, and components that are of interest are the
following:

PID: Patient Information

PID-3: Patient Identifier List–Internal

PID-3.1: Patient Identifier Value

MRG: Merge Patient Information

MRG-1: Prior Patient Identifier List–Internal

MRG-1.1: Prior Patient Identifier Value

The Merge segment (MRG) contains information about the duplicate (secondary) patient identifier
that needs to be dereferenced. MRG-1 indicates the subsumed patient identifier; the patient identifier
whose use is being ended. The PID-3 indicates the surviving patient identifier; the patient identifier
whose use continues.

Merging Process:

The Patient Identity Source merges the secondary patient identifier with the primary patient
identifier, by populating the values of the following components of PID segment:
• PID-3.1: Patient Identifier Value

• PID-3.4: Assigning Authority

in the corresponding components of the MRG segment:
• MRG-1.1: Prior Patient Identifier Value

• MRG-1.4: Assigning Authority

That is, the same value of Patient Identifier component of PID-3.1 field is populated in the Prior
Patient Identifier Value component of MRG-1.1 field. Similarly, the assigning authority of PID-3.4
component is populated in the assigning authority of the MRG-1.1 component.

18

Features

After a merge, the patient identifier PID-3 represents all records formerly represented by eitherMRG-1
or PID-3. All other fields may be ignored. The secondary patient identifier should no longer be used
to reference the patient. However, HL7 does not mandate that the secondary identifier be deleted.

After merging, the Patient Identity source sends an ADT^A40Merge Patient message to the following:
• Patient Identifier Cross-reference Manager

• Document Registry

Action taken by Patient Identifier Cross-reference Manager post merging: When the Patient
Identifier Cross-reference Manager receives the ADT^A40message type, it replaces all references to
the patient ID that was earlier existing in MRG-1.1 field with the patient ID in the PID-3.1 field. After
the references are updated, the newly updated identifiers are made available to the PIX queries
and the Patient Identifier Cross-reference Manager sends out a notification to the Patient Identifier
Cross-reference Consumers using the PIX Update Notification transaction (ITI-46).

Action taken by the Document Registry post merging: When the Document Registry receives the
ADT^A40message type, it merges the secondary patient identity (MRG-1.1) into the primary patient
identity (PID-3.1) in the registry.

After merging,
• All document submission sets including the documents and folders beneath them associated with
the secondary patient identity before merge points to the primary patient identity.

• The secondary patient identity is no longer referenced by the Registry for any future transactions.

• Any Register Document Set-b transaction referencing a subsumed identifier is rejected with an
XdsUnknownPatientId error.

• Any Registry Stored Query transaction referencing a subsumed identifier returns no content.

• Registry Stored Query transactions referencing a surviving identifier successfully match the entire
recorded merge chain and return appropriate metadata.

Note: The Document Registry performs merge only if ADT^A40message does not meet any of the
following conditions:
• The subsumed patient identifier is not issued by the correct Assigning Authority according to
the Affinity Domain configuration.

• The surviving patient identifier is not issued by the correct Assigning Authority according to
the Affinity Domain configuration.

• The subsumed and surviving patient identifiers are the same.

• The subsumed patient identifier was subsumed by an earlier message.

• The surviving patient identifier was subsumed by and earlier message.

• Both the subsumed and surviving patient identifier must convey a currently active patient
identifier known to the Registry Actor.

The changes resulting due to an A40 merge are irreversible.

19

Features

XDS Registry Transactions
XDS Registry supports the following transactions:
• ITI-18 Registry Stored Query

• ITI-42 Register Document Set

• ITI-51 Multi-Patient Query

• ITI-57 Update Document Set

• ITI-61 Register On-Demand Document Entry

• ITI-62 Delete Document Set

Trusted Host ITI-18 Endpoint
The default ITI-18 endpoint provides Patient Privacy enforcement support to the EMR applications.
The EMR applications can enable or disable PPIC. If enabled, only authorized users can access the
metadata of patient records. However, to access the metadata, the EMR applications must provide
sufficient authorization details in the request.

The applications such as Connector for Epic (C4E), Clinical Archiving, which do not support PPIC
feature, but still need to access XDS Registry to register or deregister documents, cannot use the
default ITI-18 endpoint because the default ITI-18 endpoint needs sufficient authorization details
to process the request.

Therefore, to provide ITI-18-transaction access to such applications, you can enable an additional
ITI-18 endpoint that:
• does not require authorization details to be sent over the request

• permits only a set of configured list of trusted hosts

• permits only secured transport (HTTPS)

This additional endpoint is enabled by setting the following property to true in the
registry.properties file:
registry.trusted.hosts.enabled=true

By default, this property is set to false.

If this trusted host access endpoint is enabled, the applications that do not support PPIC feature
can execute ITI-18 transactions without having to use the default endpoint that the other EMR
applications use.

You can access this endpoint by using the following URI:
https://<host:port>/registry/services/trustedhosts/xds-iti18

The default trusted host is localhost. You can configure a list of trusted hosts in the
registry-context-extension.xml file.

Configuring the Trusted Hosts, page 51 provides the steps to configure the trusted hosts.

20

Features

Patient Privacy Policy Enforcement
Users require authorization to access the healthcare metadata of a patient and documents in an
XDS Affinity Domain. Patient Privacy Policy (PPP) enforcement enables the XDS Registry Server to
perform authorization for specific requests by user.

The Healthcare Registry Services act as a Policy Enforcement Point (PEP) in conjunction with a
PDP Server (for example, Patient Privacy and Informed Consent (PPIC) Authorization Server) and
controls the authorization. When the Registry is queried to fetch the documents, the authorization
server checks if the user has permission to view all the documents that the query returns. The user is
permitted to view only those documents for which permission is granted by the patient privacy policy.

The following figure shows the PPIC authorization flow:

The functions of PPIC Authorization Server and Registry Services are as follows:
• PPIC Authorization Server:

PPIC Authorization Server maintains the Patient Privacy policies.

• XDS Registry Services:

— XDS Registry Services receive Registry Stored Query Request (ITI-18) and perform
records lookup in the Registry database.

— If ITI-18 Request is for Object Reference, XDS Registry does not perform policy enforcement
and returns all object references to the Document Consumer.

21

Features

— If ITI-18 Request is for Leaf Class, the PEP component within the XDS Registry
Services prepares Policy Decision Request containing Document Entry metadata
such as entryUUID, healthcare facility code, and so on. The PEP component uses
hip-ppic-mapping.properties to include all metadata attributes in the request. In
an XUA-enabled environment, the PEP component retrieves Subject ID and Subject Role
information from SAML token and passes them in the PDP Request.

— On receiving the Policy Decision Request, PPIC Server evaluates all policies and performs
lookup for additional metadata that is required for policy evaluation, using the registered
Policy Information Point (PIP) component.

— Based on the response received from PPIC Server, PEP component within the XDS Registry
Services filters the documents and returns the metadata of only the authorized documents to
the Document Consumer.

This feature can be enabled or disabled according to the requirement.

Configuring the PPIC Properties, page 46 provides details about configuring the PPIC properties.

The EMC Documentum PPIC Installation Guide provides details about installation and configuration
of PPIC Server.

XDS Registry DSUB Notifications
With HIP 1.9 release, you can configure XDS Registry as IHE DSUB Notification Publisher Actor.

XDS Registry publishes Document Metadata Notification (ITI-54) whenever a successful register
(ITI-42), update (ITI-57) or delete (ITI-62) transaction occurs. The Registry sends Document Metadata
Notification (ITI-54) to the DSUB Notification Broker after each successful transaction. If the DSUB
Notification Broker does not acknowledge the receipt of notification, the Registry re-sends the
notification based on the number of retries that are configured.

Configuring Registry as DSUB Notification Publisher, page 48 provides more information about
configuring HIP XDS Registry as IHE DSUB Notification Publisher.

Customization
The only customization available for the XDS Registry Server is the ability to override the
Camel SoapRouteBuilder script. This script allows you to add custom route endpoints to filter
or validate incoming requests and outgoing responses. You can do this configuration in the
registry.properties file.

Business Continuance
The following information on business continuance is applicable only for the XDS Registry Server
and not for xDB.

xDB documentation provides more details about business continuance for xDB.

22

Features

The whitepaper High Availability Configuration For a Multiple Region EMC Healthcare Integration
Portfolio (HIP) Registry and Repository provides more details on HADR.

Load Balancing and Scalability

The following are the two methods for load balancing and scaling the environment:
• Instantiate multiple instances of the XDS Registry Server and use a Load Balancer to route
incoming requests to the XDS Registry cluster.

In the event of a failure, the Load Balancer routes requests to available XDS Registry Servers to
ensure the system remains available.

• Load balance the xDB Server for performance and scalability. The xDB documentation provides
more information on load balancing.

Data Backup and Recovery

The XDS Registry Server maintains only initial XDS Registry application-specific configuration
information. This information resides in the registry configuration file (registry-config.xml)
and the server configuration properties files (registry.properties). These files are part of the
XDS Registry Server and are either backed up with the entire server installation on a VM image or
through a different method. There is no Recovery Point Objective for the XDS Registry Server because
the server does not store transaction information or Repository content. The Documentum xDB
Server stores XDS document metadata and should be backed up separately.

High Availability and Disaster Recovery

The High Availability Disaster Recovery (HADR) is achieved by implementing a backup strategy for
each XDS server in your environment, including the xDB Server.

For example:
• Spare Instance: Create spare instances of the XDS server that you can manually start when
an active XDS server fails. You can create a spare instance through VM images, ESXI servers,
or other similar methods.

• Active-Passive: Configure a Universal Fail-Over Server (UFO) that is active and able to take over
the functionality of the failing server.

• Active-Active: Configure multiple XDS Registry Servers to serve a single Documentum xDB
Server. If one server fails, the other servers remain available. XDS Registry Servers may reside
on different machines and different locations.

The whitepaper High Availability Configuration For a Multiple Region EMC Healthcare Integration
Portfolio (HIP) Registry and Repository provides more details on HADR.

23

Features

Usage Reporting
Usage Reporting is implemented to support the subscription pricing model for customers. That is,
the customers can be billed based on the usage of the product against the licenses purchased. Usage
Reporting provides a monthly report based on the usage of the product by the customer. The usage
of Registry is calculated based on the number of unique patients registered in the Registry. A Usage
Reporting web application provides the ability to view the monthly reports and to generate adhoc
reports.

Standard Usage Reports are scheduled to be automatically generated at the end of each month.
However, you can generate adhoc reports.

The monthly reports are stored in a library called UsageReports in xDB. However, ad hoc reports are
not stored in any specific location; you must download them to your local system.

You can launch the Usage Reporting user interface by using the following URL:
localhost:port/registry/reports

The default username and password to log in to the web application are configured in the
registry.properties file. You can modify the login configuration, if required.

Configuring the Usage Report Properties, page 47 provides information about configuring the Usage
Reporting properties.

When you log in to Usage Reporting web application, you can see a list of generated reports. You
can click a report to view its details.

Each report shows the following details:
• Unique Patient Count: Number of unique patients registered in the Registry.

• Generated on: Date and time when the report is generated.

• Generated By: Name of the user who generates the report.

• Host: IP of the host system that generates the reports.

• Type: Name of the product for which the reports are generated.

• Version: Version of the product for which the reports are generated.

The Usage Reporting user interface also provides options to download the reports as XML, HTML, or
PDF files.

The Generate Report Now button enables you to create ad hoc reports that show the usage details
from the day of product purchase. The names of the reports are the same as their IDs. The report
ID consists of the timestamp when the reports are generated. That is, the report ID uses the format
yyyyMMddHHmmss.

24

Chapter 3
Before You Install

Before beginning installation, ensure that your system meets the requirements.

The EMC Documentum XDS Registry Release Notes provides information on the system requirements
for your product. This documentation is available from EMC Online Support.

25

https://support.emc.com

Before You Install

26

Chapter 4
Pre-installation Tasks

This chapter describes the steps to set up the Documentum xDB database and install the dependent
libraries that you require to successfully install the XDS Registry Server.

Setting up the Documentum xDB Healthcare
Database
1. Install Documentum xDB on the system that hosts your Documentum xDB database.

You may skip this step if you already have Documentum xDB in your environment. The
Documentum xDB Manual provides the details of installation instructions.

2. Create the Documentum xDB Healthcare database.
Use the Documentum xDB Administrator tool to create a Healthcare database to hold registry
data. Allocate enough resources to the default and temporary segments to match your
performance requirements. Record the name of database for use in later configuration steps. This
installation guide mentions Healthcare as a sample database name. The Documentum xDB
Manual provides database creation instructions.

3. Establish user access for the Documentum xDB Healthcare database.
Create a non-privileged user account in the Documentum xDB Healthcare database. The XDS
Registry Server uses this account to access the Documentum xDB Healthcare database. Record
the user name and password for use in later configuration steps. This installation guide mentions
HealthcareServer as a sample user name.

Installing the Dependent Libraries
You must install the following third-party dependent libraries to successfully deploy the Registry
Server WAR file:
• xDB

• Camel

• HL7 Application Programming Interface (HAPI)

• Integrating the Healthcare Enterprise (IHE)

27

Pre-installation Tasks

Obtaining the Dependent Libraries
To obtain the xDB JAR files:
1. Create a folder in the local path to copy the xDB JAR files.

For example:
C:\jarfiles\xdb

2. Go to the xDB installation directory.
For example:
C:\Program Files\xDB\

3. Copy the lib folder containing the JAR files from the <xDB_install_dir> folder to the
C:\jarfiles\xdb folder.
For example:
C:\jarfiles\xdb\lib

The XDS Registry Server must use the xDB JAR files located in the /lib and /lib/core directories
to enable the Registry to communicate with Documentum xDB. You have to manually add the JAR
files to the XDS Registry /lib directory.

To obtain the Camel JAR files:
1. Create a folder in the local path to copy the Camel JAR files.

For example:
C:\jarfiles\camel

2. Go to www.camel.apache.org.

3. Download the following files:
For Windows:
apache-camel-2.12.1.zip

For Linux:
apache-camel-2.12.1.tar.gz

4. Extract the ZIP file to a local path.
For example,
C:\apache-camel-2.12.1

5. Go to the <local path>\apache-camel-2.12.1 folder.

6. Copy the lib folder containing the JAR files to the C:\jarfiles\camel folder.
For example:
C:\jarfiles\camel\lib

To obtain the HAPI JAR files:
1. Create a folder in the local path to copy the HAPI JAR files.

For example:
C:\jarfiles\hapi

28

Pre-installation Tasks

2. Go to www.sourceforge.net.

3. Download the hapi-dist-2.0-all.zip file.

4. Extract the ZIP file to a local path.
For example,
C:\hapi-dist-2.0-all

5. Go to the <local path>\hapi-dist-2.0-all folder.

6. Copy the lib folder containing the JAR files to the C:\jarfiles\hapi folder.
For example:
C:\jarfiles\hapi\lib

Due to licensing restrictions, HIP products do not deliver the required HAPI library JAR files used
when parsing HL7 feeds.

To obtain the IHE JAR files:
1. Create a folder in the local path to copy the IHE JAR files.

For example:
C:\jarfiles\ihe

2. Go to www.projects.openhealthtools.org.

3. Download the org.openhealthtools.ihe_2.0.0.zip file.

4. Extract the ZIP file to a local path.
For example:
C:\openhealthtools\

5. Go to the C:\openhealthtools folder.

6. Copy the following JAR files to the C:\jarfiles\ihe folder:
• org.openhealthtools.ihe.atna.context_2.0.0.jar

• org.openhealthtools.ihe.atna.nodeauth_2.0.0.jar

• org.openhealthtools.ihe.utils_2.0.0.jar

7. Go to www.repo.openehealth.org.

8. Copy the following JAR file to the C:\jarfiles\ihe folder:
org.openhealthtools.ihe.atna.auditor-2.0.0-p4.jar

Bundling the Dependent Libraries
1. Download the hip-registry-1.9.0.zip file from the EMC Software Download Center.

2. Extract the hip-registry-1.9.0.zip file to a local folder.
For example:
C:\hip-registry-1.9

You can find the build.xml file in the C:\hip-registry-1.9 folder.

3. Go to the command prompt and navigate to the directory where build.xml is located.

29

Pre-installation Tasks

For example:
C:\hip-registry-1.9

4. Run build.xml using the following command:
ant -f build.xml

After you run the ant -f build.xml command, you obtain the install folder as follows:
C:\hip-registry-1.9\install

You can find the hip-registry-1.9.0.war file in the install folder.

5. When the script prompts you to enter the Camel home directory, type the complete path of
Camel home directory.
For example:
C:\jarfiles\camel

6. When the script prompts you to enter the HAPI home directory, type the complete path of HAPI
home directory.
For example:
C:\jarfiles\hapi

7. When the script prompts you to enter the xDB home directory, type the complete path of xDB
home directory.
For example:
C:\jarfiles\xdb

You must enter the xDB home directory where xDB is installed. If xDB is installed in a remote
system, copy all JAR files from the xDB lib folder to a local folder and rename the local folder to
xDB home directory.

8. When the script prompts you to enter the IHE home directory, type the complete path of IHE
home directory.
For example:
C:\jarfiles\ihe

30

Chapter 5
Configuring HIP XDS Registry

This chapter describes the steps to configure HIP XDS Registry.

Configuring the Server Directory
Configuring the server directory consists of the following tasks:
• Creating the HIP configuration directory

• Deploying the properties files in the HIP configuration directory

• Securing the Registry properties file

Creating the HIP Configuration Directory

The HIP servers maintain configuration information in a directory called hip that is located outside
the WAR file. This design enables users to easily upgrade to newer versions of the software by
replacing the server WAR file.

By default, HIP uses the following directory:
<user.home>/.hip

where <user.home> is the home directory of the user who implements the XDS Registry Server.

For example:
C:\Users\username\

If this directory does not already exist, create a folder named .hip in your user.home directory
by typing:
.hip.

Ensure that you place a dot at the end of the name. The Windows system removes the trailing dot.

The resulting folder must have the following name:
C:\Users\username\.hip

The com.emc.healthcare.com Java system property defines the location of the configuration
directory. If you want to override the default location of the HIP server configuration information,
override the com.emc.healthcare.com system property when you start your J2EE Web
Application container.

31

Configuring HIP XDS Registry

Use the following syntax:
-Dcom.emc.healthcare.home=<hip_config_directory>

Deploying the Property Files in the HIP Configuration
Directory
1. Go to the install folder that you obtained when you ran the build command described in Step 4.

For example:
C:\hip-registry-1.9\install

2. Extract the hip-registry-1.9.0.war file.

3. Go to the \hip-registry-1.9.0\config\ folder.

4. Copy the registry folder to C:\Users\username\.hip\.
The resulting path should be <hip_config_dir>/registry.

5. Ensure that the following files are present in the C:\Users\username\.hip\registry folder.
• hip-ppic-mapping.properties

• registry.properties

• registry-config.xml

• registry-context-extension.xml

• serviceKeystore.properties

• ws-policy.xml

You must configure the property files according to your environment, for a successful installation.

Securing the Registry Properties File

The registry.properties file contains access information for the XDS Registry.

Secure the file as follows:
• Restrict access to the system where the XDS Registry Server and the registry.properties
file reside.

• Restrict access to the registry.properties file by providing the read/write access only to the
HIP Administrator. See www.wiki.apache.org/tomcat/FAQ/Password.

• Provide an encrypted Documentum user password. You can create an encrypted password during
Documentum installation or through the encryptPassword utility.

The EMC Documentum Content Server Administration and Configuration Guide provides the details
on password encryption.

32

http://wiki.apache.org/tomcat/FAQ/Password

Configuring HIP XDS Registry

Enabling Remote xDB Instance Support
1. Open the registry.properties file.

2. Set the value of xdb.readNode.bootstrapFileName as follows:
xdb.readNode.bootstrapFileName=xhive://<host-name>:1235>

where <host-name> is the IP address of the remote xDB instance.

3. Edit the xdb.properties file located in C:\Program Files\xDB\conf as follows to ensure
that the remote xDB instance accepts connections from other machines.
xDB server listen address, '*' to accept all connections,
'localhost' to only accept local connections
XHIVE_SERVER_ADDRESS=*
xDB webserver listen address, '*' to accept all connections,
'localhost' to only accept local connections
XHIVE_WEBSERVER_ADDRESS=*

4. Save and close the file.

5. Restart xDB and Registry.

Configuring the Registry Properties File
The registry.properties file contains user-definable properties that provide the XDS Registry
Server with information about connecting to other systems.

During startup, the XDS Registry Server first evaluates the registry.properties file, and then
evaluates the System Properties. Properties are set in the order they are encountered. If you set a
property in multiple locations, the final occurrence of the property takes precedence.

The registry.properties, page 75 in Appendix A provides a sample content for the
registry.properties file. You can refer this file for configuration examples.

To configure the registry.properties file, open the <hip_config_dir>/registry
/registry.properties file, and configure the properties as described in the following topics.

Configuring the Registry Property

Property Description

description A description for the XDS Registry Server. This
description is used only for display purposes.

This property is optional and has no default
value.

33

Configuring HIP XDS Registry

Configuring the Documentum xDB Properties

The xDB properties enable the Registry to connect to the Documentum xDB Healthcare database.
These properties also include the HADR properties that define the primary read/write and backup
read and write nodes.

The following xDB properties are mandatory properties. If you fail to configure these properties,
the XDS Registry Server fails to start.

Property Description

xdb.libraryPath The location in the Documentum xDB database
where the XDS Registry Server stores the
data. This property is pre-configured with the
following value, but you can change this value
to specify a different location.

xdb.cachePages The number of cache pages for the page server
defined in xdb.bootstrapFileName.

xdb.maximumPoolSize The maximum pool size for the page server
defined in xdb.bootstrapFileName.

Configuring the HADR Properties

The HADR properties define the primary read/write and backup read/write nodes.

HADR properties are defined to avoid the exceptions occurring for both read and write transactions
when only one xDB is available in XDS Registry for both read and write, and that xDB becomes
unavailable. To avoid a transaction failure, the xDB database is separated into two—one for read
and another for write.

The xDB master is set up as the write node and xDB replica is set up as the read node. In this design,
the read operation continues to operate even when the Master xDB (write node) is down. Similarly,
the write operation continues when the read node is down. Besides this, an additional xDB server
with separate nodes for read and write is setup to act as backup node when the primary nodes
are unavailable.

The primary read node parameters are mandatory where as the primary write node parameters are
optional. Each takes a single parameter. The backup read and write node parameters are comma
separated list that can include multiple backup server nodes. The backup read and write node
parameters are optional.

Primary read node parameters:

Property Description

xdb.readNode.bootstrapFileName The connection to a dedicated page server that runs
behind the specified TCP/IP port. A bootstrap specifies a
connection to a federation.

This property is mandatory.

34

Configuring HIP XDS Registry

Property Description

xdb.readNode.databaseName The name of the Documentum xDB database. You
created and configured this database in Setting up the
Documentum xDB Healthcare Database, page 27.

This property is mandatory and has no default value.

xdb.readNode.userName The username that the XDS Registry Server uses to
access the Documentum xDB database. You created
and configured this user account in Setting up the
Documentum xDB Healthcare Database, page 27.

This property is mandatory and has no default value.

xdb.readNode.password The password of the user that the XDS Registry Server
uses to access the Documentum xDB.

This property is mandatory and has no default value.

Note: Perform the following steps to encrypt the
password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows:

C:\EncryptPassword>HipEncryptPassword

.bat

2. When the system prompts to enter the password,
type the password as follows:

Enter clear text password>Password

The encrypted password is generated as follows:

HIP_ENCR_PASS=JxwGkf59eneCKgVhZljyEA==

After generating the encrypted password,
the hip.keystore file is generated in
C:\EncryptPassword\ folder.

3. Rename the hip.keystore file to a valid name, for
example, hip_readNode.keystore.

4. Copy the hip_readNode.keystore file
from the C:\EncryptPassword\ folder to
{com.emc.healthcare.home}/registry/.

5. Set the xdb.readNode.keystore property as
follows:

xdb.readNode.keystore=${com.emc

.healthcare.home}/registry/hip_readNode

.keystore

35

Configuring HIP XDS Registry

Property Description

After encryption, in the registry.properties file,
the xdb.readNode.password property appears as
follows:

xdb.readNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

xdb.readNode.keystore The path to the Read node keystore file.

This property is mandatory if the HIP encrypted
password is configured.

Primary write node parameters (for single node deployment, set these four values to blank):

Property Description

xdb.writeNode.bootstrapFileName The bootstrap filename for the Write node.

xdb.writeNode.databaseName The database name for the Write node.

xdb.writeNode.userName The user name for the Write node.

xdb.writeNode.password The password for the Write node.

Note: Perform the following steps to encrypt the
password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows:

C:\EncryptPassword>HipEncryptPassword.bat

2. When the system prompts to enter the password,
type the password as follows:

Enter clear text password>Password

After password encryption, the hip.keystore file
is generated in the C:\EncryptPassword\ folder.

3. Rename the hip.keystore file to hip_writeNode
.keystore (or any valid file name).

4. Copy the hip_writeNode.keystore
file from C:\EncryptPassword\ to
{com.emc.healthcare.home}/registry/.

5. Set the xdb.writeNode.keystore property as
follows:

xdb.writeNode.keystore=${com.emc

.healthcare.home}/registry/hip_writeNode

.keystore

36

Configuring HIP XDS Registry

Property Description

After encryption, in the registry.properties file,
the xdb.writeNode.password property appears as
follows:

xdb.writeNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

xdb.writeNode.keystore The path to the Write node keystore file.

This property is mandatory if the HIP encrypted
password is configured.

Backup read node parameters (optional):

xdb.backup.readNode
.bootstrapFileName

The bootstrap filename for the backup Read node.

xdb.backup.readNode.databaseName The database name for the backup Read node.

xdb.backup.readNode.userName The user name for the backup Read node.

xdb.backup.readNode.password The password for the backup Read node.

For example:

xdb.backup.readNode.password=password

Note: Perform the following steps to encrypt the
password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows:

C:\EncryptPassword>HipEncryptPassword.bat

2. When the system prompts to enter the password,
type the password as follows:

Enter clear text password>Password

After generating the encrypted password,
the hip.keystore file is generated in
C:\EncryptPassword\ folder.

3. Rename the hip.keystore file to a valid filename,
for example, hip_bkupreadNode.keystore.

4. Copy the hip_bkupreadNode.keystore file
from the C:\EncryptPassword\ folder to
{com.emc.healthcare.home}/registry/.

5. Set the xdb.backup.readNode.keystore
property as follows:

37

Configuring HIP XDS Registry

xdb.backup.readNode.keystore=${com.emc

.healthcare.home}/registry/hip_bkupreadNode

.keystore

After encryption, in the registry.properties file,
the xdb.backup.readNode.password property
appears as follows:

xdb.backup.readNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

xdb.backup.readNode.keystore The path to the backup Read node keystore file.

This property is mandatory if the HIP encrypted
password is configured.

Backup write node parameters (optional):

xdb.backup.writeNode
.bootstrapFileName

The bootstrap filename for the backup Write node.

xdb.backup.writeNode.databaseName The database name for the backup Write node.

xdb.backup.writeNode.userName The user name for the backup Write node.

xdb.backup.writeNode.password The password for the backup Write node.

Note: Perform the following steps to encrypt the
password:
1. From the command prompt, execute the

HipEncryptPassword.bat command as follows:

C:\EncryptPassword>HipEncryptPassword.bat

2. When the system prompts to enter the password,
type the password as follows:

Enter clear text password>Password

After generating the encrypted password,
the hip.keystore file is generated in
C:\EncryptPassword\ folder.

3. Rename the hip.keystore file to a valid filename,
for example, hip_bkupwriteNode.keystore.

4. Copy the hip_bkupwriteNode.keystore
file from the C:\EncryptPassword\ folder to
{com.emc.healthcare.home}/registry/.

5. Set the xdb.backup.writeNode.keystore
property as follows:

xdb.backup.writeNode.keystore=${com

.emc.healthcare.home}/registry/hip

_bkupwriteNode.keystore

38

Configuring HIP XDS Registry

After encryption, in the registry.properties file,
the xdb.backup.writeNode.password property
appears as follows:

xdb.backup.writeNode.password=HIP_ENCR_PASS

=JxwGkf59eneCKgVhZljyEA==

xdb.backup.writeNode.keystore The path to the backup Write node keystore file.

This property is required if the HIP encrypted password
is configured.

Note:
• Backup list can be blank and optional.

• Primary write node and read node can be configured with same values.

Configuring the Registry Configuration File Properties

The Registry configuration file properties enable the Registry to find and use the Registry
configuration file.

Property Description

config.autoImport Specifies whether the system must automatically update
the Documentum xDB-based registry-config.xml
file each time it detects the changes made to the file
system version.

config.document The path and filename of the registry-config.xml
file that resides in the file system. If this document does
not already exist in the Documentum xDB database,
Registry Server loads the file from the file system to the
Documentum xDB database regardless of the value of
the config.autoImport property.

By default, the Registry Server stores the file in the HIP
Configuration directory.

The Documentum xDB database stores this file in the
Documentum xDB library path that is defined in the
xdb.libraryPath property.

Configuring the MLLP Parameters

The MLLP parameters identify and control the ports where the Registry Server listens for patient
identity feeds.

39

Configuring HIP XDS Registry

Property Description

mllp.port The non-secure port that the Registry Server uses to
listen to the ITI-8 Patient Identity Feed messages.

Default value: 0.

When set to 0, the Registry Server does not open a
listening port.

mllp.securePort The optional secure port that the Registry Server uses to
listen to the ITI-8 Patient Identity Feed messages.

Default value: 0.

When set to 0, the Registry Server does not open a
listening port.

When not set to 0, you must also configure the HTTPS
properties in this file.

Note: The https.server.privateKeyPassword
property should be configured if you enable the MLLP
secure port. The value of this property must be the
private key password.

hl7.inbound.message.encoding The MLLP encoding format.

Default value: UTF-8.

HIP Repository supports only ISO 8859-1 and UTF-8
encoding.

mllp.routeBuilderScriptSource If defined, overrides the default MLLP RouteBuilder
script included in the Registry Server installation. The
script is located within the classpath of one of the JAR
files. Copies of the script are also located in the WAR file
package and in the HIP configuration directory.

This property is optional.

If not defined, the Registry Server uses the default value,
which is the script included with the Registry Server
installation in the classpath.

For example:

mllp.routeBuilderScriptSource=classpath:com

/emc/healthcare/xds/registry/commons

/MllpRouteBuilder.groovy

40

Configuring HIP XDS Registry

Property Description

If you change the script located in the /ROUTES directory
of the WAR file, use the following syntax to load the
altered script.

mllp.routeBuilderScriptSource=ROUTES

/MllpRouteBuilder.groovy

If you change the script located on the file system, load
the altered script using the absolute path to the file.

For example:

mllp.routeBuilderScriptSource=file:C:\

\absolute\\path\\myMllp.groovy

Ensure that you use a path that is appropriate for
your operating system. This example shows a sample
Windows path.

Configuring the Custom SOAP Routes Properties

Property Description

soap.routeBuilderScriptSource Specifies whether you want to override the default SOAP
RouteBuilder script provided with the Registry Server
installation.

This property is optional.

The default script is located within the classpath of one of
the JAR files. Copies of the script are also located in the
WAR file package and in the HIP configuration directory.

If this property is not defined, the Registry Server uses
the default value, which is to use the script included with
the Registry Server installation in the classpath.

If you change the script located in the/ROUTES directory
of the WAR file, use the following syntax to load the
altered script.

For example:

soap.routeBuilderScriptSource=ROUTES

/SoapRouteBuilder.groovy

41

Configuring HIP XDS Registry

Property Description

Note: The SoapRouteBuilder.groovy file must have
the xuaEnabled property defined in the file. The server
fails to start if the property is missing in the file.

If you change the script located on the file system, load
the altered script using the absolute path to the file.

For example:

soap.routeBuilderScriptSource=file:C:\

\absolute\\path\\mySOAP.groovy

Ensure that you use a path that is appropriate to your
operating system. This example shows a Windows path.

Configuring the Request and Response Validator
Properties

The request and response validator flags are located in the spring configuration file in the deployed
WAR. You must enable these flags to avoid problems that may occur if the request is not correct.

Property Description

Request Validator Properties

registry.iti18.requestValidator.enabled

registry.iti42.requestValidator.enabled

registry.iti51.requestValidator.enabled

registry.iti61.requestValidator.enabled

registry.iti62.requestValidator.enabled

Specifies whether to disable the incoming message
validation for the specified IHE transaction.

These flags are optional and are enabled by default.

Response Validator Properties

registry.iti18.responseValidator
.enabled

registry.iti42.reponseValidator
.enabled

registry.iti51.responseValidator
.enabled

registry.iti61.responseValidator
.enabled

registry.iti62.responseValidator
.enabled

Specifies whether to disable the outgoing message
validation for the specified IHE transaction.

These flags are optional and are enabled by default.

42

Configuring HIP XDS Registry

Configuring the IHE Endpoint for Trusted Hosts

The IHE endpoint for trusted hosts is provided for applications such as Connector for Epic (C4E),
Clinical Archiving, which do not support PPIC feature, and cannot use the default ITI-18 endpoint to
access XDS Registry to register/deregister documents.

Property Description

registry.trusted.hosts.enabled Specifies whether to enable the IHE endpoint for trusted
hosts.

Default value: false.

Configuring the HTTPS Properties

The HTTPS properties enable the XDS Registry Server to use the secure HTTPS communication. You
must configure these properties if mllp.securePort is set to a non-zero value.

The first four HTTPS configurations are required if XUA is enabled.

Property Description

https.keyStore The location of the keystore on the system where you
keep the private SSL certificates for this system. If you
do not use HTTPS, comment this property by prefixing it
with a pound sign (#).

This property is optional and has no default value.

https.keyStorePassword The password that is used to access the keystore. If you
do not use HTTPS, comment this property by prefixing it
with a pound sign (#).

This property is optional and has no default value.

https.trustStore The location of the truststore on the system where
you keep SSL certificates of machines trusted in
TSL connections. This location is where you keep
the certificates of Document Consumers and XDS
Repositories. If you do not use HTTPS, comment this
property by prefixing it with a pound sign (#) .

This property is optional and has no default value.

https.trustStorePassword The password that is used to access the truststore.If you
do not use HTTPS, comment this property by prefixing it
with a pound sign (#).

This property is optional and has no default value.

43

Configuring HIP XDS Registry

Property Description

https.ciphersuites The Cipher Suite that is used to encrypt the session.
If you do not use HTTPS, comment this property by
prefixing it with a pound sign (#).

This property is optional and has no default value.

https.server.keyAlias The alias that is used for the server certificate in the
keystore. If not specified, the first key read in the
keystore is used.

https.server.privateKeyPassword The private key password that is used to encrypt the
data.

Note: You must configure this property if MLLP secure
port is enabled. The value of this property must be the
private key password.

Configuring the ATNA Properties

Property Description

audit.host The name of the system that hosts the ATNA audit
repository.

audit.port The port number of the ATNA audit repository.

Default value: 514.

audit.transport The transport type for the ATNA audit repository.

For example, BSD, TLS, or UDP.

Default value: UDP.

audit.sourceId The source ID of the event.

This property has no default value.

Configuring the XUA Properties

The registry.properties file contains user-definable properties for XUA on the server. The HIP
XDS Repository Server and HIP XDS Registry Server share these configuration steps. If you use
both the HIP XDS Repository and HIP XDS Registry Servers, you must enable XUA separately
for each component.

44

Configuring HIP XDS Registry

Property Description

registry.xua.enabled Specifies whether you want to enable XUA for the XDS
Registry Server.

Default value: false.

After enabling XUA, you must configure the registry.properties file as described in the
following topics:

Configuring the XUA Policy

The ws-policy.xml file enables the Web Service security for the server. This file defines and
enables standard WS-Security features such as confidentiality (encryption), integrity (signing), and
authentication (SAML token) for Web Services.

A sample ws-policy.xml file resides in the following XDS Registry directory:
/webapps/registry/config/registry/

Copy the sample ws-policy.xml file to /webapps/registry/WEB-INF/classes/.

Alternatively, you can place this file in a different folder and define the file location in the server
classpath.

Configuring the XUA SAML Attribute Values

The XDS Registry Server uses the XUA SAML attribute properties to validate SAML Security Token
attributes sent as part of a Registry request.

Property Description

xua.service.endpoint The endpoint regular expression. The XDS
Registry Server compares this value against the
audience restriction attribute provided in the
token.

xua.crypto.provider The crypto provider that you must use for
encryption and decryption, and signature
validation.

xua.supported.authentication.methods A comma-separated list of authentication
methods supported by the XDS Registry.

xua.purposeOfUse.codeSystem The supported system that is used for the
PurposeOfUseCode attribute.

xua.purposeOfUse.code.values A comma-separated list of purpose of use codes
that the XDS Registry supports.

xua.role.codeSystem The supported code system value for the
RoleCode attribute.

45

Configuring HIP XDS Registry

Property Description

xua.role.code.values A comma-separated list of roles that the XDS
Registry supports.

xua.saml2.token.validator The validator that validates the SAML token in
the request.

Configuring the XUA Attribute Validation Property

The XUA attribute validation option can enable or disable some SAML attribute validations.

Property Description

xua.authz.consent.option Specifies whether to enable or disable the
validation of the patient consent attribute value
of SAML token.

Default value: false.

Configuring the Trusted Assertion Provider Properties

This configuration is required if you enable XUA. These properties do not have any default value.

Property Description

xua.assertion.provider.trustStore The path to a truststore file.

xua.assertion.provider.trustStorePassword The password to access the truststore file.

Configuring the PPIC Properties

Property Description

ppic.enabled Specifies whether to enable the PPIC server for user
authorization. If enabled, the PPIC server checks if
the user has permission to view the documents that a
retrieve query returns.

Default value: false.

Note: You must configure the ppic.pdpServiceUrl
property, if you enable this property.

ppic.pdpServiceUrl The URL for making PDP service call for PPIC.

46

Configuring HIP XDS Registry

Configuring the Usage Report Properties

Property Description

usagereport.username The username that you use to log in to the Usage
Reporting web application.

The default username is Administrator.

usagereport.password The password you use to log in to the Usage Reporting
web application.

The default password is password.

Configuring the Unified Endpoint Properties

Property Description

unifiedEndpoint
.routeBuilderScriptSource

The UnifiedRouteBuilder script path.

Default value: classpath:com/emc/healthcare/xds
/registry/commons/UnifiedEndpointRouteBuilder
.groovy.

unifiedEndpoint.enabled Specifies whether to enable or disable the unified
endpoint on the XDS Registry server.

Default value: true.

Note: If unifiedEndpoint.enabled is set to true, it is
mandatory to enable HTTP. If HTTP is not enabled, the
requests to XDS Registry will fail.

unifiedEndpoint.xdsServer.port The http port of the application server where the XDS
Registry server is deployed.

This property is mandatory and can take any value
greater than zero.

Default value: 0.

unifiedEndpoint.xdsServer
.contextPath

The context name of the XDS Registry Server in the
application server.

Default value: /registry.

unifiedEndpoint.xdsServer
.servicePath

The service path of the XDS Registry Server in the
application server.

Default value: /services/.

47

Configuring HIP XDS Registry

Configuring Registry as DSUB Notification Publisher

Property Description

dsub.enabled Specifies whether to enable or disable the DSUB broker.

Default value: false

If the value of dsub.enabled is set to true, it is
mandatory to configure the RabbitMQ server properties.

notificationBroker.iti54Url The ITI-54 endpoint of the Notification Broker where
ITI-54 messages are published.

If the URL is secured, you must configure the HTTPS
properties.

Configuring the RabbitMQ Properties

The following properties need to be configured only if the dsub.enabled property is set to true.

Property Description

rabbitmq.ssl.enabled Specifies whether SSL is enabled between HIP servers
and RabbitMQ server.

Default value: False.

You must configure the HTTPS properties if this
property is enabled.

rabbitmq.host The name of the system that hosts the RabbitMQ server.

rabbitmq.port The RabbitMQ server port.

rabbitmq.username The user name for the RabbitMQ server.

rabbitmq.password The password for the RabbitMQ server.

rabbitmq.virtualhost The virtual host name for the RabbitMQ server.

This host must be pre-created in the RabbitMQ server to
prevent deployment failure.

rabbitmq.maximumRedeliveries The maximum number of times the XDS Registry
attempts to redeliver the ITI-54 notification to the
Notification Broker.
• 0: Indicates no redeliveries

• 5: Indicates five attempts to redeliver.

Default value: 3

48

Configuring HIP XDS Registry

Property Description

rabbitmq.redelivery.delay The number of milliseconds the XDS Registry waits
before the next re-delivery attempts to the Notification
Broker.

Default value: 5000

rabbitmq.iti54PublisherExchange The RabbitMQ exchange where the publishedmetatdata
messages are stored by the XDS Registry for further
processing.

Default value: iti54PublisherExchange

rabbitmq.iti54PublisherQueue The RabbitMQ queue where the ITI-54 notifications are
queued which are further processed by XDS Registry by
invoking DSUB Notification Broker ITI-54 endpoint.

Default value: iti54PublisherQueue

rabbitmq.iti54PublishFailedExchange The RabbitMQ exchange where the failed messages for
ITI-54 are stored for further processing.

rabbitmq.iti54PublishFailedQueue The RabbitMQ queue where the failed messages for
ITI-54 are queued for further processing.

Configuring the Registry Configuration File
The XDS Registry Server configuration file resides in the xDB healthcare database in the /registry
library. This file stores information about your Registry. The Registry configuration file resides in
two places. The Documentum xDB database stores the main Registry configuration file that the server
uses. Another version of the file resides on the file system to enable you to easily make changes
to the file.

Element Description

strictAboutCodes Specifies how the XDS Registry Server responds when it
receives register requests that do not contain valid coded
document metadata.

The server validates the coded metadata in the
request against the appropriate code set defined in
registry-config.xml.

If set to True, the server rejects the request. If set to
False, the server accepts the request even if it does not
recognize the code.

49

Configuring HIP XDS Registry

Element Description

strictAboutPatientIds Specifies how the XDS Registry Server responds when
it receives register requests where the patient ID is
unknown or does not match the patient IDs already
known to the Registry.

The server validates the patient identifier in the request
against the patient identifiers received from the patient
identity feed source.

If set to True, the server rejects the register request. If
set to False, the server accepts the request.

codeClassification All classification codes that the Registry expects when
receiving a register request.

This element contains the following two attributes:
• name: The coded metadata name.

• classificationScheme: The scheme value of the coded
metadata.

assigningAuthority The assigning authority that provides IDs for patients
and submits patient identities to the Registry. The XDS
Registry Server accepts the registration requests only
from the assigning authorities that are defined here.

Code A code, which is a sub-element of the codeClassification
element.

The element has the following three attributes:
• code: The code value.

• codeSystemName: The ID of the code system to
which the code belongs.

• displayName: The display name of the code.

Configuring the HIP PPIC Mapping Properties
File
Property Description

documentEntry.patientId The XDS Affinity Domain Patient identifier.

documentEntry.typeCode The code that indicates the precise kind of document (for
example, Pulmonary History and Physical, Discharge
Summary, Ultrasound Report).

50

Configuring HIP XDS Registry

Property Description

documentEntry.classCode The high-level classification of documents that indicates
the kind of document (for example, report, summary,
note, consent.)

documentEntry
.healthcareFacilityCode

The type of organizational setting of the clinical
encounter during which the documented act occurred.

documentEntry.confidentialityCode The level of confidentiality of the document.

documentEntry.homeCommunityId The globally unique identifier for a community.

documentEntry.eventCode The main clinical acts, such as a colonoscopy or an
appendectomy, being documented.

documentEntry.practiceSettingCode The clinical specialty where the act that resulted in the
document was performed. For example, Family Practice,
Laboratory, Radiology.

request.subjectId The logical identifier of the user performing the original
service request.

request.subjectRole The relevant user subject roles from a locally defined
Code-Set.

Configuring the Web Container Heap Memory
You have to configure the initial and maximum heap size settings for your J2EE Web Application
container according to the memory allocated to the server. You must also monitor the J2EE Web
Application container during testing to ensure that the settings are sufficient.

For Apache Tomcat, EMC recommends:

Running the server as a service:
#Set initial heap size Xms and maximum heap size -Xmx JAVA_OPTS=”
-Xms512m –Xmx1024m –XX:MaxPermSize=512m”

Running the server as a standalone system:
Set “JAVA_OPTS”=-Xms256m –Xmx1g –XX:MaxPermSize=256m”

Configuring the Trusted Hosts
1. Go to the <HIP_HOME>/registry folder.

2. Open the registry-context-extension.xml file.

3. Add the IP address of all trusted hosts as follows:
<util:list id="trustedHostsIPAddressList" list-class="java.util.ArrayList">
<value>10.31.170.192</value>
<value>10.31.170.193</value>
</util:list>

51

Configuring HIP XDS Registry

By default, the additional ITI-18 endpoint can only be accessed over a secured transport.

4. If you need to provide access over non-secure channel, add the following bean:
<bean id="com.emc.healthcare.commons.core.cxf.CompositeSoapServiceAccessValidator"

class="com.emc.healthcare.commons.core.cxf.CompositeSoapServiceAccessValidator">
<constructor-arg index="0">
<list>
<--!<ref bean="com.emc.healthcare.commons.core.cxf.HttpsRequestAccessValidator"/>-->
<ref bean="com.emc.healthcare.commons.core.cxf.WhitelistIPAddressAccessValidator"/>
</list>
</constructor-arg>

</bean>

Configuring the IHE Endpoint for Trusted Hosts, page 43 provides the configuration information on
enabling the IHE endpoint for trusted hosts.

Configuring SSL
This section describes the steps to configure SSL for Apache Tomcat and Oracle WebLogic.

Configuring SSL for Tomcat

Add the paths for the keystore and truststore in the following file:
<Tomcat_install_dir>/conf/server.xml

For example:
<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"

SSLEnabled="true" maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="C:/Users/Administrator/.hip/keystore.jks"
keystorePass="changeit"
truststoreFile="C:/Users/Administrator/.hip/truststore.jks"
truststorePass="changeit"/>

Configuring SSL for WebLogic
1. Log in to the WebLogic console.

For example,
http://server:7001/console

2. For each server, enable the Configuration > General > SSL Listen Port Enabled setting.
Ensure that you use a correct and unused port.

3. For each server, change the KeyStore configuration as follows:

a. From the Configuration > Keystores panel, click Change.

b. Type the values for the following fields as given in the example below:
Custom Identity Keystore=C:/Users/Administrator/.hip/keystore.jks

52

Configuring HIP XDS Registry

Custom Identity Keystore Type=JKS
Custom Identity Keystore Passphrase=changeit
Custom Trust keystore=C:/Users/Administrator/.hip/truststore.jks
Custom Trust Keystore Type=JKS
Custom Trust Keystore Passphrase=changeit

4. For each server, change the SSL configuration as follows:

a. In the Configuration > SSL panel, configure the following fields:
Private Key Alias=serverXX
Private Key Passphrase=changeit

5. Click Save.

53

Configuring HIP XDS Registry

54

Chapter 6
Installing the XDS Registry Server

This chapter describes the steps to install the XDS Registry Server on Microsoft Windows system
and Linux system.

Deploying the HIP Registry WAR File on
Windows
HIP supports deploying the HIP Registry WAR file using Apache Tomcat or Oracle WebLogic.

Follow the procedure described for the application server you have installed.

Deploying the HIP Registry WAR File Using Tomcat
1. Stop the J2EE Web Application container.

2. Copy the XDS Registry Server WAR file to the following directory:
<tomcat_install_dir>/webapps/

3. Rename the WAR file to registry.war.

4. Start the J2EE Web Application container to expand the WAR file.
The examples in this guide are provided with the assumption that the WAR file is deployed in
<tomcat_install_dir>/webapps/.

Deploying the HIP Registry WAR File Using WebLogic

Before deploying the WAR file:
1. Set the following environment variable:

Name: DOMAIN_HOME

Value: ~\Oracle\Middleware\user_projects\domains\domain{domain used
for deployment}

2. Set the following System Properties in the WebLogic startup script:

55

Installing the XDS Registry Server

com.sun.xml.ws.spi.db.BindingContextFactory=com.sun.xml.ws.db.glassfish
.JAXBRIContextFactory javax.xml.bind.JAXBContext=com.sun.xml.bind.v2
.ContextFactory javax.wsdl.factory.WSDLFactory=com.ibm.wsdl.factory
.WSDLFactoryImpl

3. Set the HIP home location in the startup script to get the log files generated in the
<user.home>/.hip/ folder.

Example:

set JAVA_OPTIONS=%JAVA_OPTIONS% -Dcom.emc.healthcare.home=C:\Users
\<username>\.hip

1. Log in to the WebLogic Admin console.

2. Go to base_domain > deployment.

3. Click Install.

4. From Install Application Assistant, click the upload your file link in the Note.

5. From Deployment Archive, browse and select the hip-registry-1.9.0.war file.

6. Click Next.

7. Select Install as application.

8. Click Next.

9. Click Finish.

10. Check if the deployment state of HIP Registry is Active.
The Active state shows that the deployment is successful.

Deploying the HIP Registry WAR File on Linux
1. Log in as root user.

2. Copy hip-registry-1.9.0.war to the following location:
$CATALINA_HOME/webapps

3. Run the following command to change Tomcat installation owner to dmadmin.
chown –R $CATALINA_HOME dmadmin:dmadmin

4. Set dmadmin environment variables.

5. Set HIP Java options in $CATALINA_HOME/bin/setenv.sh.
JAVA_OPTS="-Xms512m -Xmx1g -XX:MaxPermSize=512m -Dcom.emc.healthcare.home=/home/dmadmin/.hip"

6. As dmadmin, copy the .hip folder to the following location:
/home/dmadmin

7. As root user, create Tomcat startup/etc/init.d/tomcat setting the values appropriately.
For example:
#!/bin/bash
description: Tomcat Start Stop Restart

56

Installing the XDS Registry Server

processname: tomcat
chkconfig: - 90 10
Source function library
. /etc/rc.d/init.d/functions

CATALINA_HOME=/app/apache-tomcat-7.0.42
TOMCAT_OWNER=dmadmin

#Set Startup Options for HIP
#See $CATALINA_HOME/bin/setenv.sh
#Check they have been used using ps-ef|grep tomcat

case $1 in
start)

echo "Starting tomcat under dmadmin account..."
echo "Note:xDB Must be Running or HIP Registry startup will fail..."
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/startup.sh"
;;

stop)
echo "Stopping tomcat..."
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/shutdown.sh"
;;

restart)
echo "Restarting tomcat under dmadmin account..."
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/shutdown.sh"
sleep 2
su - $TOMCAT_OWNER -c "$CATALINA_HOME/bin/startup.sh"
sleep 2
;;

status)
status tomcat
;;

*)
echo "Usage: $0 {start|stop|restart|status}"
exit 1
;;

esac
exit 0

8. Change permissions and set Tomcat to auto-start on reboot.
chmod +x /etc/init.d/tomcat
chkconfig tomcat on

57

Installing the XDS Registry Server

58

Chapter 7
Verifying the Installation

This chapter describes the steps to verify the installation of HIP XDS Registry Server.

Verifying the Installation Using Tomcat
1. Ensure that the dependent libraries are installed.

2. Ensure that the .hip folder is available in the C:\Users\<username> folder.
If you want to override the default location of the HIP configuration folder, override the
com.emc.healthcare.com system property when you start the J2EE Web Application
container.
Use the following syntax: -
Dcom.emc.healthcare.home=<hip_config_directory>

3. Start the xDB Server and ensure that the Healthcare database is operational.

4. Start the XDS Registry Server using the normal start procedure for the J2EE web application
container. For example, start the server on Tomcat with the following command:
[root]# service Tomcat start

5. Check the log file for errors.
For example:
/usr/share/apache-Tomcat-7.0.42/logs/catalina.out

6. Open a web browser and type the following URL:
http://<host:port>/registry/services

The Web Services Description Language (WSDL) page appears, which indicates that the server
installation is successful.

Verifying the Installation Using WebLogic
1. Log in to WebLogic Admin console.

2. Ensure that the dependent libraries are installed.

3. Ensure that the .hip folder is available in C:\Users\<username> folder.

59

Verifying the Installation

If the user does not have rights to access the C:\Users\<username> folder, perform the
following steps:
a. Create .hip folder in any other location.

b. Update the startWebLogic.cmd file located at ~\Oracle\Middleware\user
_projects\domains\domain{domain used for deployment} by adding the
following line:
set JAVA_OPTIONS=-Dcom.emc.healthcare.home=C:\.hip (“.hip location”)

4. Ensure that the HIP configuration properties files are present in the .hip folder.

5. Restart the system for the preceding changes to take effect.

6. Start the WebLogic server.

7. Deploy the registry WAR file.

8. Open a web browser and type the following URL:
http://<host:port>/registry/services

The WSDL page appears, which indicates that the server installation is successful.

60

Chapter 8
Upgrading HIP XDS Registry

This chapter contains the instructions to upgrade XDS Registry from version 1.8 to 1.9.

Upgrading XDS Registry from Version 1.8 to 1.9
1. Delete previous version of Registry WAR file from the deployed location.

2. Install the dependent libraries.
The version of org.openhealthtools.ihe.atna.auditor jar file used by XDS Registry 1.9
is 2.0.0-p4. Ensure that you install the correct version.

3. Build a new Registry WAR from the hip-registry-1.9.0.zip file.

4. Go to the \registry\config\ folder in the WAR file.

5. Copy the registry folder containing the properties file to HIP_HOME directory.

6. Configure the properties files in the HIP_HOME directory.
XDS Registry 1.9 supports unified endpoints for XDS transactions. Ensure that the unified
endpoint properties for Registry are configured in the registry.properties file.

7. Deploy the hip-registry-1.9.0.war file.

8. Verify the upgrade.

61

Upgrading HIP XDS Registry

62

Chapter 9
Troubleshooting

This chapter describes the log settings, the XDS Registry installation issues, and their resolutions.

Log Settings
A log is a chronological record of system activities that is sufficient to enable the reconstruction and
examination of the sequence of environments and activities surrounding or leading to an operation,
procedure, or event in a security-relevant transaction from inception to final results.

Log Description

The log file for the XDS Registry Server is located in the <hip_config_directory>\logs folder.

For Apache Tomcat:

C:\Users\<username>\.hip\logs\registry.log

For Oracle WebLogic:

C:\Users\<username>\.hip\logs\registry.log

Log Management and Retrieval

The XDS Registry Server uses the Simple Logging Facade for Java (SLF4J) combined with a logback
logging provider implementation.

The default log level setting is INFO.

You can increase the trace messages by setting the log level to DEBUG in the

<tomcat installation directory>\webapps\registry\WEB-INF\classes\logback
.xml file.

For example:
<--!Set to DEBUG to see detailed HIP message information -->
<logger name="com.emc.healthcare">
<level value="DEBUG"/>

63

Troubleshooting

</logger>

Issues and Resolutions
This section describes the XDS Registry issues and their resolutions.

Context Initialization Failing when Deploying the Server
WAR Files
Issue with HIP Configuration

Problem

When you try to install the Registry WAR files, you receive an error message as follows:
o.s.web.context.ContextLoader - Context initialization failed
org.springframework.beans.factory.BeanInitializationException:
Could not load properties; nested exception is java.io.FileNotFoundException:
C:\Users\Administrator\.hip\registry\registry.properties

(The system cannot find the path specified)
at org.springframework.beans.factory.config.PropertyResourceConfigurer.postProcessBeanFactory
(PropertyResourceConfigurer.java:87) ~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

Cause
The .hip folder is not available in <user home>.

Resolution
Ensure that the HIP configuration properties are available in the %HIP HOME%.

Configuring the Server Directory, page 31 provides more details on HIP configuration.

Issue with Camel Jar Files

Problem

When you try to install the Registry WAR files, you receive an error message as follows:
10:57:01.592 [localhost-startStop-1] INFO o.s.b.f.xml.XmlBeanDefinitionReader
- Loading XML bean definitions from class path resource [META-INF/spring/xua-context.xml]
10:57:01.895 [localhost-startStop-1] ERROR o.s.web.context.ContextLoader -
Context initialization failed
org.springframework.beans.factory.parsing.BeanDefinitionParsingException:
Configuration problem: Unable to locate Spring NamespaceHandler for XML schema namespace
[http://camel.apache.org/schema/spring] Offending resource: ServletContext resource
[/WEB-INF/spring/context.xml]
at org.springframework.beans.factory.parsing.FailFastProblemReporter.error
(FailFastProblemReporter.java:68) ~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

64

Troubleshooting

Cause

Camel JAR files are not added to the Tomcat classpath.

Resolution

Install Camel Library Dependencies.

Installing the Dependent Libraries, page 27 provides the steps to install camel dependent libraries.

Cannot Connect to the XDS Registry Server

Problem

You are unable to connect to the XDS Registry Server.

Cause

You are using incorrect URL or the Registry installation is incomplete.

Resolution

• Ensure that the endpoint (url:port) is correct.

You can also validate the URL by accessing the XDS Registry Server WSDL.

http://localhost:<port>/registry/services.

If the WSDL loads then the XDS Registry Server is up.

• Ensure that the server is up and running.

Chapter 7, Verifying the Installation provides the steps for verification.

• Ensure that the TLS certificates are valid and accessible.

• If you use XUA, ensure that the XUA configurations are correct.

Configuring the XUA Properties, page 44 provides details on XUA configuration.

65

Troubleshooting

Cannot Access the xDB Server

Problem

You receiving the following error message when trying to connect to xDB:
o.s.web.context.ContextLoader - Context initialization failed
org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'com.emc.healthcare.commons.xdb.ManagedXhiveDriver'
defined in class path resource [META-INF/spring/hip-commons-xdb-beans.xml]:
Invocation of init method failed; nested exception is
com.xhive.error.XhiveException: CONNECTION_FAILED:
Connect to server at 127.0.0.1:1235 failed, Original message:
Connection refused: connect

Cause

Incorrect configuration of xDB Server properties.

Resolution

• Ensure that the xDB Server is running.

• Verify if the xDB bootstrap file name is correct.

• Ensure that the xDB username and password are correct.

Configuring the Documentum xDB Properties, page 34 provides details on xDB configuration.

Java Errors at Startup

Problem

You get an error message as follows in the startup.
java.lang.NoClassDefFoundError: Lca/uhn/hl7v2/parser/Parser;
at java.lang.Class.getDeclaredFields0(Native Method)
at java.lang.Class.privateGetDeclaredFields(Unknown Source)
at java.lang.Class.getDeclaredFields(Unknown Source)
at org.codehaus.groovy.vmplugin.v5.Java5.configureClassNode(Java5.java:313)

Cause

The server cannot find the HAPI JAR files because they were not deployed or were deployed
incorrectly.

66

Troubleshooting

Resolution

Deploy the HAPI JAR files.

Chapter 6, Installing the XDS Registry Server provides more information.

XUA Policy File Error

Problem

You receive the following error in the log file during initialization:
Context initialization failed
org.apache.camel.RuntimeCamelException:
org.apache.cxf.ws.policy.PolicyException: Policy reference
classpath:ws-policy.xml could not be resolved.

Cause

The XDS Registry Server cannot find the ws-policy.xml file defined in the classpath.

Resolution

Ensure that you copy the sample ws-policy.xml file from
/webapps/registry/config/registry/

and place it in
/webapps/registry/WEB-INF/classes/

Alternatively, you can place this file in a different folder and define the file location in the server
classpath.

servicesstore.jks File Not Found Error

Problem

You get an error message as follows in the log file:
java.io.FileNotFoundException: certificates\servicestore.jks (The system cannot
find the path specified)

67

Troubleshooting

Cause

The XDS Registry Server is unable to find the keystore file specified in the serviceKeystore
.properties file.

If you use HTTPS to connect to the XDS Registry, the appropriate TLS certificates (keystore.jks,
truststore.jks) must be located in the HIP_HOME directory.

Resolution

• Copy the keystore file to the location specified in serviceKeystore.properties.

• Verify if SSL and the paths for the keystores/truststores are configured in tomcat\conf\server
.xml as follows:
<Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="C:/Users/Administrator/.hip/keystore.jks"
keystorePass="changeit"
truststoreFile="C:/Users/Administrator/.hip/truststore.jks"
truststorePass="changeit"/>

Must Understand Headers Error

Problem

The XDS Registry Server writes the following error to the log file:
WARN o.a.cxf.phase.PhaseInterceptorChain - Interceptor for {urn:ihe:iti:xds-b:2007}
DocumentRegistry_Service#{urn:ihe:iti:xds-b:2007}
DocumentRegistry_RegisterDocumentSet-b has thrown exception, unwinding now
org.apache.cxf.binding.soap.SoapFault: MustUnderstand headers:
[{http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd}Security]are not understood

Cause

An XUA-enabled XDS Registry Server received a request without a security header.

Resolution

With XUA enabled on the server, all requests must contain a security header. Either disable XUA on
the server or instruct the sending application to send requests with security headers.

68

Troubleshooting

To disable XUA, open the registry.properties file and set the registry.xua.enabled
property to false.

java.lang.OutOfMemoryError: PermGen space error

Problem

You receive an java.lang.OutOfMemoryError:PermGen space error while verifying the
deployment of verifying the deployment of HIP Registry.

Cause

The permanent generation heap is full.

Resolution

Increase the Permgen space.

For Tomcat:
Set JAVA_OPTS=-Xms256m –Xmx512m -XX:PermSize=256m -XX:MaxPermSize=512m

For WebLogic:

Replace the following lines in the setDomainEnv.cmd files located at C:\Oracle\Middleware
\user_projects\domains\base_domain\bin

Replace:
set WLS_MEM_ARGS_64BIT="-Xms256m -Xmx512m"

set WLS_MEM_ARGS_32BIT="-Xms256m -Xmx512m"

With:
set WLS_MEM_ARGS_64BIT=-Xms256m –Xmx512m -XX:MaxPermSize=512m
set WLS_MEM_ARGS_32BIT=-Xms256m –Xmx512m -XX:MaxPermSize=512m

Required Header Not Present Error

Problem

The XDS Registry Server writes the following error to the log file:
org.apache.cxf.interceptor.Fault: A required header representing a Message Addressing
Property is not present

69

Troubleshooting

Cause

An XUA-enabled XDS Registry Server received a request without a security header.

Resolution

If XUA is enabled on the server, all requests must contain a security header. You must either disable
XUA on the server or instruct the sending application to send requests with security headers.

To disable XUA, open the registry.properties file and set the registry.xua.enabled
property to false.

Unable to Connect to Documentum xDB

Problem

The XDS Registry Server is unable to connect to the xDB healthcare database and you receive the
following error message in the log file:
ERROR Context initialization failed
org.springframework.beans.factory.BeanCreationException: Error creating bean
with name 'org.apache.cxf.bus.spring.BusApplicationListener' defined in class
path resource [META-INF/cxf/cxf.xml]: Initialization of bean failed; nested
exception is org.springframework.beans.factory.BeanCreationException: Error
creating bean with name 'camelContext': Invocation of init method failed; nested
exception is org.apache.camel.RuntimeCamelException:
org.springframework.beans.factory.BeanCreationException: Error creating bean with
name 'com.emc.healthcare.xds.registry.DirectRouteBuilder' defined in class path
resource [META-INF/spring/hip-xds-registry-commons-beans.xml]: Cannot create inner bean

Cause

The XDS Registry Server is unable to connect to the xDB healthcare database because:
• The Documentum xDB is not currently running

• The Documentum xDB database and log in information are incorrect

Resolution

• Connect to the Documentum xDB Admin Client and access the healthcare database to verify that
Documentum xDB is running and accessible.

• Ensure that registry.properties file contains correct Documentum xDB database names
and user names.

70

Troubleshooting

Configuring the Documentum xDB Properties, page 34 provides more information on xDB
configuration.

o.s.web.context.ContextLoader - Context Initialization
Failed

Problem

You get an error message as follows during context initialization:
09:18:28.719 [http-bio-80-exec-17] ERROR
o.s.web.context.ContextLoader - Context initialization failed
org.apache.camel.RuntimeCamelException:
org.apache.camel.FailedToCreateRouteException: Failed to create
route xds-iti8://0.0.0.0:9183: Route(xds-iti8://0.0.0.0:9183)
[[From[xds-iti8://0.0.0.0:9183... because of Failed to
resolve endpoint: xds-iti8://0.0.0.0:9183?clientAuth=MUST&codec=
%23iti8Hl7Codec&secure=true&sslContext=%23sslContext due to:
org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'sslContextFactory' defined
in class path resource [META-INF/spring/hip-xds-registry-
commons-beans.xml]: Cannot resolve reference to bean '
keyStore' while setting bean property 'keyManagerFactoryKeyStore';
nested exception is
org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'keyStoreFactory' defined in
class path resource [META-INF/spring/hip-xds-registry-commons-beans.xml]:
Error setting property values; nested exception is
org.springframework.beans.PropertyBatchUpdateException;
nested PropertyAccessExceptions (1) are:
PropertyAccessException 1:
org.springframework.beans.MethodInvocationException:
Property 'dataFile' threw exception;
nested exception is java.lang.NullPointerException

at org.apache.camel.util.ObjectHelper.
wrapRuntimeCamelException(ObjectHelper.java:1344)
~[camel-core-2.12.1.jar:2.12.1]

at org.apache.camel.spring.SpringCamelContext.
onApplicationEvent(SpringCamelContext.java:120)
~[camel-spring-2.12.1.jar:2.12.1]

Cause

You have not configured the HTTPS parameters that must be configured when you use secure MLLP
port.

71

Troubleshooting

Resolution

If you use secure MLLP port, you must configure the following optional parameters in the
registry.properties file.

For example, replace the following values according to your setup:

https.keyStore=${com.emc.healthcare.home}/keystore.jks

https.keyStorePassword=changeit

https.trustStore=${com.emc.healthcare.home}/truststore.jks

https.trustStorePassword=changeit

https.ciphersuites=TLS_RSA_WITH_AES_128_CBC_SHA

https.server.privateKeyPassword=changeit

The https.server.privateKeyPassword is mandatory for MLLP secure port.

CannotLoadBeanClassException: Error loading class

Problem

You receive an error message as follows:
Caused by: org.springframework.beans.factory.
CannotLoadBeanClassException: Error loading class
[com.emc.healthcare.xua.hanlder.XuaCallbackHandler]
for bean with name 'callbackHanlder' defined in
class path resource [META-INF/spring/xua-context.xml]:
problem with class file or dependent class; nested
exception is java.lang.UnsupportedClassVersionError:
com/emc/healthcare/xua/hanlder/XuaCallbackHandler :
Unsupported major.minor version 51.0 (unable to load
class com.emc.healthcare.xua.hanlder.XuaCallbackHandler)

at org.springframework.beans.factory.
support.AbstractBeanFactory.resolveBeanClass
(AbstractBeanFactory.java:1278) ~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.factory.
support.AbstractAutowireCapableBeanFactory.createBean
(AbstractAutowireCapableBeanFactory.java:435)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.AbstractBeanFactory$1.getObject
(AbstractBeanFactory.java:295) ~
[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.DefaultSingletonBeanRegistry.
getSingleton(DefaultSingletonBeanRegistry.java:223)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.AbstractBeanFactory.doGetBean
(AbstractBeanFactory.java:292)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.AbstractBeanFactory.getBean

72

Troubleshooting

(AbstractBeanFactory.java:194)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.beans.
factory.support.BeanDefinitionValueResolver.
resolveReference(BeanDefinitionValueResolver.java:323)
~[spring-beans-3.2.4.RELEASE.jar:3.2.4.RELEASE]

... 25 common frames omitted

Cause

You are using JDK 1.6 for the Application server.

Resolution

HIP servers require JDK 1.7. Use the JDK 1.7 version.

Apache Camel Shutting Down

Problem

You get an error message as follows:
09:27:55.568 [http-bio-80-exec-21]
INFO o.a.camel.spring.SpringCamelContext
- Apache Camel 2.12.1 (CamelContext: camelContext)
is shutdown in 0.109 seconds
09:27:55.577 [http-bio-80-exec-21]
ERROR o.s.web.context.ContextLoader -
Context initialization failed
org.apache.camel.RuntimeCamelException:
java.net.BindException: Address already in use: bind

at org.apache.camel.util.
ObjectHelper.wrapRuntimeCamelException
(ObjectHelper.java:1344) ~[camel-core-2.12.1.jar:2.12.1]

at org.apache.camel.spring.
SpringCamelContext.onApplicationEvent
(SpringCamelContext.java:120) ~[camel-spring-2.12.1.jar:2.12.1]

at org.apache.camel.spring.
CamelContextFactoryBean.onApplicationEvent
(CamelContextFactoryBean.java:301) ~[camel-spring-2.12.1.jar:2.12.1]

at org.springframework.context.
event.SimpleApplicationEventMulticaster.
multicastEvent(SimpleApplicationEventMulticaster.java:96)
~[spring-context-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.context.
support.AbstractApplicationContext.publishEvent
(AbstractApplicationContext.java:334)
~[spring-context-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.
context.support.AbstractApplicationContext.
finishRefresh(AbstractApplicationContext.
java:948) ~[spring-context-3.2.4.RELEASE.

73

Troubleshooting

jar:3.2.4.RELEASE]
at org.springframework.

context.support.AbstractApplicationContext.
refresh(AbstractApplicationContext.java:482)
~[spring-context-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.web.
context.ContextLoader.
configureAndRefreshWebApplicationContext(ContextLoader.java:389)
~[spring-web-3.2.4.RELEASE.jar:3.2.4.RELEASE]

at org.springframework.web.context.
ContextLoader.initWebApplicationContext
(ContextLoader.java:294)
~[spring-web-3.2.4.RELEASE.jar:3.2.4.RELEASE]

Cause

Some of the MLLP ports used in HIP properties file are being used by some other application.

Resolution

Change the MLLP ports to the ports that are not used by other applications.

74

Appendix A

Sample Configuration Files

This appendix contains sample content of the following files:
• registry.properties

• registry-config.xml

• hip-ppic-mapping.properties

registry.properties
User settable properties are listed in this file.
The order of property evaluation is as follows:
1: ${com.emc.healthcare.home}/registry/registry.properties is consulted first
2: System.properties is consulted second.
#
Property values are set in the order they are encountered. If the
same property is defined in multiple locations, the final setter takes precedence
#
All settable properties for this server are enumerated in this file.
If a property defined and commented out this documents its default value.
#
#

The description property is used to contain a description of this
server instance for display purposes
NO DEFAULT
description=XDS Registry

------------------------- xDB Related Parameters -------------------------
#
The properties below that do not have values, have no defaults. The
three properties without defaults listed below must be configured or
the registry server will fail to start.
#
The xdb.libraryPath has no default, however, it has been set to
"/registry" in this property file so that the end user has one less configuration
decision to make.

xdb.libraryPath=/registry

xdb.cachePages=0
xdb.maximumPoolSize=20

#---
The following set of 5 parameters are used to define the primary READ XDB node.
These settings are mandatory.

75

Sample Configuration Files

#---
xdb.readNode.bootstrapFileName=xhive://localhost:1235
xdb.readNode.databaseName=
xdb.readNode.userName=
xdb.readNode.password=
xdb.readNode.keystore property is required if HIP encrypted password is configured

DEFAULT=${com.emc.healthcare.home}/registry/hip.keystore
xdb.readNode.keystore=${com.emc.healthcare.home}/registry/hip.keystore
#
The same applies to xdb.writeNode.keystore, xdb.backup.readNode.keystore
and xdb.backup.writeNode.keystore.

#--
The following (optional) set of 5 parameters is used to define
the primary WRITE XDB node.
For Single node deployment, set these 4 values to blank
#--
xdb.writeNode.bootstrapFileName=
xdb.writeNode.databaseName=
xdb.writeNode.userName=
xdb.writeNode.password=
#xdb.writeNode.keystore= is required if HIP encrypted password is configured

#--
The following (optional) parameters are comma separated list for
Backup READ XDB nodes setup.
#--
xdb.backup.readNode.bootstrapFileName=
xdb.backup.readNode.databaseName=
xdb.backup.readNode.userName=
xdb.backup.readNode.password=
xdb.backup.readNode.keystore= is required if HIP encrypted password is
configured

#--
The following (optional) parameters are comma separated list for
Backup WRITE XDB nodes setup.
#--
xdb.backup.writeNode.bootstrapFileName=
xdb.backup.writeNode.databaseName=
xdb.backup.writeNode.userName=
xdb.backup.writeNode.password=
#xdb.backup.writeNode.keystore= is required if HIP encrypted password
is configured

---------------------- Registry Configuration Parameters--------------------
Indicates whether the xDB-based config document should be automatically
updated when a change is detected to the copy on the file system.
DEFAULT=false
config.autoImport=false

The path on the file system where the registry configuration document
is stored. The final name portion of this document will be preserved in the
xDB library. Using the defaults below, this means that the library path for
this document will translate to:
${xdb.libraryPath}/registry-config.xml
Which translates to: /registry/registry-config.xml
#
Regardless of the value of the config.autoImport flag, the registry
will attempt to load the document into xDB from the disk file copy if the
library path for the document does not yet exist in xDB. After first
load the value of the autoImport property is honored.
#
#

76

Sample Configuration Files

DEFAULT=${com.emc.healthcare.home}/registry-config.xml
config.document=${com.emc.healthcare.home}/registry/registry-config.xml

-------------- Minimal Lower Layer Protocol (MLLP) Parameters ---------------#
The MLLP parameters are used control the ports upon which the Registry
server listens for ITI-8 Patient Identity feeds. The mllp.port and mllp.
securePort both default to "0". When the port is set to "0" the Registry
server will not open a listening port.
#
An optional unsecure port that will be used to listen for
ITI-8 'Patient Identity Feed' messages.
DEFAULT=0
mllp.port=0

An optional secure port that will be used to listen for ITI-8
'Patient Identity Feed' messages.
If this property is set to a non zero value, the https properties
must also be set.
DEFAULT=0
mllp.securePort=0

An optional specification that allows users to override the default
MLLP RouteBuilder script provided with the product. The actual location
of this within the classpath is within one of the Jar files shipped
with the product. A copy of this script is available inside this
war package. Copies of the source used to define the routes have been
copied into the ROUTES directory of this war.
#
#
When this property is not set, the default is used, which loads the
MllpRouteBuilder.groovy source from a resource on the class path. There
are two other useful ways you could set this property.
#
1: Load the copy that is shipped with the war file. The syntax for
doing this is shown below. The file name is path relative to the
exploded war directory
#
mllp.routeBuilderScriptSource=ROUTES/MllpRouteBuilder.groovy
#
2: Load a copy of the source from the file system. Note that when
you load this file from the file system you must use the absolute
path of the file formatted in a way appropriate for your operating system.
#
mllp.routeBuilderScriptSource=file:/absolute/path/myMllp.groovy
#
Or for Windows:
#
#
mllp.routeBuilderScriptSource=file:C:/absolute/path/myMllp.groovy
#
This is equivalant to
#
mllp.routeBuilderScriptSource=file:C:\\absolute\\path\\myMllp.groovy
#
In Windows, the first "\" character is treated as an escape character
by the properties loader. Windows does allow the use of the
"/" character as a path separator.
#
DEFAULT=classpath:com/emc/healthcare/xds/registry/commons/MllpRouteBuilder.groovy
mllp.routeBuilderScriptSource=classpath:com/emc/healthcare/xds/registry/commons/MllpRouteBuilder.groovy

#----------------------------- Soap Route Builder -------------------------------#

An optional specification that allows users to override the default

77

Sample Configuration Files

Soap RouteBuilder script provided with the product. The actual location of
this within the classpath is within one of the Jar files shipped with the
product. See description for soap.routeBuilderScriptSource above
for details on how this can be used.
#
DEFAULT=classpath:com/emc/healthcare/xds/registry/commons/SoapRouteBuilder.groovy
soap.routeBuilderScriptSource=classpath:com/emc/healthcare/xds/registry/commons/SoapRouteBuilder.groovy
#
Optional flags to disable incoming message validation. These flags
may be used in special situations to disable incoming message validation.
These flags are intended mainly for Connectathon testing in case a testing
partner does not pass message validation. Messages that do not pass
validation have a high likelihood of failing for other reasons
later in the processing cycle. These flags should always be set
to "true" in production scenarios.
#
DEFAULT=true
registry.iti18.requestValidator.enabled=true
DEFAULT=true
registry.iti42.requestValidator.enabled=true
DEFAULT=true
registry.iti51.requestValidator.enabled=true
DEFAULT=true
registry.iti61.requestValidator.enabled=true
DEFAULT=true
registry.iti62.requestValidator.enabled=true
#----- Enables Additional IHE Endpoint for trusted Hosts Only ---------------#
registry.trusted.hosts.enabled=false
--------------------------- HTTPS Related Properties --------------------
#
The following properties must be configured for secure communication
These are used for keystore and truststore configuration.
Keystore configurations (first 4 https configurations) are required
if XUA is enabled
#
The final property in this section, https.ciphersuites is used
to configure the suite used, a suitable value for this parameter is:
TLS_RSA_WITH_AES_128_CBC_SHA
#
The properties in this section have NO DEFAULTS

https.keyStore
https.keyStorePassword
https.server.keyAlias
https.server.privateKeyPassword
https.trustStore
https.trustStorePassword
https.ciphersuites

--------------------- ATNA Audit Related Parameters ---------------------

Host name for the ATNA audit repository
DEFAULT=localhost
audit.host=localhost

Port number for the ATNA audit repository.
DEFAULT=514
audit.port=514

Transport type for the ATNA audit repository (BSD, TLS, UDP)
DEFAULT=UDP
audit.transport=UDP

78

Sample Configuration Files

An optional source identifier for ATNA audit messages.
NO DEFAULT
audit.sourceId=${description}

----------------------- XUA Related Properties ---------------------------#

Flag to enable/disable Cross Enterprise User Assertion Validation
Default value is false
registry.xua.enabled=false

The following properties are not required to be configured
if XUA validation is disabled

The validator to validate the SAML token in the request.
The default value is com.emc.healthcare.xua.validator.XuaValidator
xua.saml2.token.validator=com.emc.healthcare.xua.validator.XuaValidator

The Crypto provider to be used for encryption/decryption and signature
validation.
The default value is org.apache.ws.security.components.crypto.Merlin
xua.crypto.provider=org.apache.ws.security.components.crypto.Merlin

The service endpoint regular expression to match against service endpoint
attribute provided in the token.
If not configured, the service endpoint provided in the token is not validated
xua.service.endpoint

The list of "," separated authentication methods supported by the XDS Registry.
if not configured, Authentication method provided in the token is not validated
xua.supported.authentication.methods

The code system and the list of "," separated code values supported for
the PurposeOfUseCode attribute provided in the token.
if not configured, PurposeOfUseCode value provided in the token is not validated
xua.purposeOfUse.codeSystem
xua.purposeOfUse.code.values

The code system and the list of "," separated code values supported
for the Role attribute provided in the token.
if not configured, Role value provided in the token is not validated
xua.role.codeSystem
xua.role.code.values

The property to enable/disable Authorization Consent validation
Default value is false
xua.authz.consent.option=false

Configuration of trusted assertion providers' certificates.
It is a required configuration if XUA is enabled and has no default value.
xua.assertion.provider.trustStore
xua.assertion.provider.trustStorePassword

------------------------- PPIC Related Properties -----------------------#

Flag to enable/disable PPIC
Default value is false
ppic.enabled=false

#The URL for making pdp service call for PPIC.
Example: repository.pdpServiceURL=http://localhost:8080/ppic/pdp
ppic.pdpServiceUrl=http://localhost/ppic/pdp
#----------------------Usage Report properties----------------------------#

User name to login to usage report User Interface

79

Sample Configuration Files

Default is Administrator
#usagereport.username=

User password to login to usage report User Interface
Default is password
#usagereport.password=
#------------------- Unified EndPoint Related Properties-------------------#
unifiedEndpoint.routeBuilderScriptSource=classpath:com/emc/healthcare/xds/registry/commons/UnifiedEndpointRouteBuilder.groovy

unifiedEndpoint.enabled = true
unifiedEndpoint.xdsServer.port=0
unifiedEndpoint.xdsServer.contextPath=/registry
unifiedEndpoint.xdsServer.servicePath=/services/
#------------------- ------ DSUB Configurations -------------------------#
Flag to enable/disable DSUB
Optional, default value is false.
dsub.enabled=false

DSUB ITI54 notification publish URL
Required if dsub is enabled, no default.
notificationBroker.iti54Url=
#--------------------------- RabbitMQ Configurations -----------------------#
The following RabbitMQ properties should be configured if dsub is enabled
to publish metadata to the configured dsub broker

##The name of the machine that hosts RabbitMQ server.
#rabbitmq.host

##The RabbitMQ server port.
#rabbitmq.port

##The user name for RabbitMQ server.
#rabbitmq.username

##The password for RabbitMQ server.
#rabbitmq.password

##The virtual host name for RabbitMQ server.
#rabbitmq.virtualhost

##The RabbitMQ exchange where the published metatdata messages are stored
by the notification broker for further processing.
#rabbitmq.iti54PublisherExchange

##The RabbitMQ queue where the incoming ITI-54 notifications are queued.
##rabbitmq.iti54PublisherQueue

##The RabbitMQ exchange where the failed messages for ITI-54 are stored
for further processing.
#rabbitmq.iti54PublishFailedExchange

##The RabbitMQ queue where the failed messages for ITI-54 are queued
for further processing.
#rabbitmq.iti54PublishFailedQueue

#The maximum number of times the XDS Registry attempts to redeliver the
ITI-54 notification to the Notification Broker.
#rabbitmq.maximumRedeliveries=3

##The number of milliseconds the XDS Registry waits before the next
re-delivery attempts to the Notification Broker.
#rabbitmq.redelivery.delay=5000

80

Sample Configuration Files

registry-config.xml
This sample is edited to reduce the length of the content. A full length sample resides in the
/registry folder in your HIP Configuration Directory.
<?xml version="1.0" encoding="utf-8"?>
<registryConfig

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.emc.com/healthcare/xds/registry/commons/config"
xsi:schemaLocation="http://www.emc.com/healthcare/xds/registry/commons/
config registry-config.xsd">

<strictAboutCodes>true</strictAboutCodes>
<strictAboutPatientIds>true</strictAboutPatientIds>
<codeClassification name="contentTypeCode" classificationScheme=
"urn:uuid:aa543740-bdda-424e-8c96-df4873be8500">
<code code="Communication" displayName="Communication"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Evaluation and management" displayName="Evaluation and management"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Conference" displayName="Conference" codeSystemName=

"Connect-a-thon contentTypeCodes"/>
<code code="Case conference" displayName="Case conference"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Consult" displayName="Consult" codeSystemName=

"Connect-a-thon contentTypeCodes"/>
<code code="Confirmatory consultation" displayName="Confirmatory consultation"

codeSystemName="Connect-a-thon contentTypeCodes"/>
<code code="Counseling" displayName="Counseling" codeSystemName=

"Connect-a-thon contentTypeCodes"/>
<code code="Group counseling" displayName="Group counseling"

codeSystemName="Connect-a-thon contentTypeCodes"/>
</codeClassification>
<codeClassification name="associationDocumentation"
classificationScheme="urn:uuid:abd807a3-4432-4053-87b4-fd82c643d1f3">
<code code="Additional_Information" codeSystemName=
"Connect-a-thon associationDocumentation" displayName=
"Additional Information"/>

<code code="Corrected_Information" codeSystemName=
"Connect-a-thon associationDocumentation" displayName="Corrected Information"/>
</codeClassification>

<assigningAuthority id="1.19.6.24.109.42.1.3"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2005.3.7"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2008.2.1"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2009.1.2.300"/>
<assigningAuthority id="1.3.6.1.4.1.21367.2010.1.2.300"/>
<assigningAuthority id="1.3.6.1.4.1.21367.13.20.1000"/>
<assigningAuthority id="1.3.6.1.4.1.21367.13.20.2000"/>
<assigningAuthority id="1.3.6.1.4.1.21367.13.20.3000"/>

</registryConfig>

hip-ppic-mapping.properties
documentEntry.patientId=urn:ihe:iti:xds-b:2007:patient-id
documentEntry.typeCode=urn:ihe:iti:xds-b:2007:document-entry:type-code
documentEntry.classCode=urn:ihe:iti:xds-b:2007:document-entry:class-code
documentEntry.healthcareFacilityCode=urn:ihe:iti:xds-b:2007:document-entry:healthcare-facility-type-code

81

Sample Configuration Files

documentEntry.confidentialityCode=urn:ihe:iti:xds-b:2007:confidentiality-code
documentEntry.homeCommunityId=urn:ihe:iti:xds-b:2007:home-community-id
documentEntry.eventCode=urn:ihe:iti:xds-b:2007:document-entry:event-code
documentEntry.practiceSettingCode=urn:ihe:iti:xds-b:2007:document-entry:practice-setting-code

request.subjectId=urn:oasis:names:tc:xacml:1.0:subject:subject-id
request.subjectRole=urn:oasis:names:tc:xacml:2.0:subject:role

82

Index

A
about XDS Registry server, 9
ATNA properties, 44

C
configuring registry properties, 33
creating hip directory, 31
customization, 22

D
data backup and recovery, 23
deploying property files, 32
deploying registry war, 55
deploying war file using tomcat, 55
deploying war file using Weblogic, 55
DSUB notification broker properties, 48

E
enabling remote xDB support, 33
enabling XUA, 44
endpoints, 14

H
HADR properties, 34
high availability and disaster recovery, 23
HTTPS properties, 43

I
installing xDB, 27

L
load balancing and scalability, 23
log description, 63
log management and retrieval, 63
log settings, 63

M
merge patient identity, 18
MLLP properties, 39

N
new patient identity notification, 17

O
obtaining camel jars, 28
obtaining library dependency, 28
obtaining xDB jars, 28

P
patient identity feed, 17
patient privacy enforcement, 21
ppic mapping properties, 50
PPIC properties, 46
provide and register document set

transaction, 12

R
RabbitMQ properties, 48
register document set transaction, 12
registry configuration, 31
registry configuration file, 49
registry configuration properties, 39
registry overview, 9
registry server architecture, 9
registry stored query request, 13
request and response validator

properties, 42
retrieve document set transaction, 13

S
sample files, 75
SOAP routes properties, 41
ssl configuration, 52

83

Index

SSL for J2EE web container, 52
SSL for WebLogic, 52

T
troubleshooting, 63
trusted assertion provider options, 46
trusted host configuration, 51

U
unified endpoint properties, 47
upgrade, 61
usage report properties, 47
usage reporting, 24

V
verifying installation using tomcat, 59
verifying installation using WebLogic, 59
verifying the installation, 59

W
web container heap memory, 51
working of XDS Registry server, 10

X
xDB properties, 34
xds registry transactions, 20
XUA policy, 45
XUA SAML attribute values, 45

84

	Installation Guide
	Revision History
	About XDS Registry Server
	Overview
	Architecture
	Workflow
	Endpoints

	Features
	ITI-8 Patient Identity Notifications
	New Patient Identity Notification
	Merge Patient Identities Notification

	XDS Registry Transactions
	Trusted Host ITI-18 Endpoint
	Patient Privacy Policy Enforcement
	XDS Registry DSUB Notifications
	Customization
	Business Continuance
	Load Balancing and Scalability
	Data Backup and Recovery
	High Availability and Disaster Recovery

	Usage Reporting

	Before You Install
	Pre-installation Tasks
	Setting up the Documentum xDB Healthcare Database
	Installing the Dependent Libraries
	Obtaining the Dependent Libraries
	Bundling the Dependent Libraries

	Configuring HIP XDS Registry
	Configuring the Server Directory
	Creating the HIP Configuration Directory
	Deploying the Property Files in the HIP Configuration Directory
	Securing the Registry Properties File

	Enabling Remote xDB Instance Support
	Configuring the Registry Properties File
	Configuring the Registry Property
	Configuring the Documentum xDB Properties
	Configuring the HADR Properties

	Configuring the Registry Configuration File Properties
	Configuring the MLLP Parameters
	Configuring the Custom SOAP Routes Properties
	Configuring the Request and Response Validator Properties
	Configuring the IHE Endpoint for Trusted Hosts
	Configuring the HTTPS Properties
	Configuring the ATNA Properties
	Configuring the XUA Properties
	Configuring the XUA Policy
	Configuring the XUA SAML Attribute Values
	Configuring the XUA Attribute Validation Property
	Configuring the Trusted Assertion Provider Properties

	Configuring the PPIC Properties
	Configuring the Usage Report Properties
	Configuring the Unified Endpoint Properties
	Configuring Registry as DSUB Notification Publisher
	Configuring the RabbitMQ Properties

	Configuring the Registry Configuration File
	Configuring the HIP PPIC Mapping Properties File
	Configuring the Web Container Heap Memory
	Configuring the Trusted Hosts
	Configuring SSL
	Configuring SSL for Tomcat
	Configuring SSL for WebLogic

	Installing the XDS Registry Server
	Deploying the HIP Registry WAR File on Windows
	Deploying the HIP Registry WAR File Using Tomcat
	Deploying the HIP Registry WAR File Using WebLogic

	Deploying the HIP Registry WAR File on Linux

	Verifying the Installation
	Verifying the Installation Using Tomcat
	Verifying the Installation Using WebLogic

	Upgrading HIP XDS Registry
	Upgrading XDS Registry from Version 1.8 to 1.9

	Troubleshooting
	Log Settings
	Log Description
	Log Management and Retrieval

	Issues and Resolutions
	Context Initialization Failing when Deploying the Server WAR Files
	Issue with HIP Configuration
	Problem
	Cause
	Resolution

	Issue with Camel Jar Files
	Problem
	Cause
	Resolution

	Cannot Connect to the XDS Registry Server
	Problem
	Cause
	Resolution

	Cannot Access the xDB Server
	Problem
	Cause
	Resolution

	Java Errors at Startup
	Problem
	Cause
	Resolution

	XUA Policy File Error
	Problem
	Cause
	Resolution

	servicesstore.jks File Not Found Error
	Problem
	Cause
	Resolution

	Must Understand Headers Error
	Problem
	Cause
	Resolution

	java.lang.OutOfMemoryError: PermGen space error
	Problem
	Cause
	Resolution

	Required Header Not Present Error
	Problem
	Cause
	Resolution

	Unable to Connect to Documentum xDB
	Problem
	Cause
	Resolution

	o.s.web.context.ContextLoader - Context Initialization Failed
	Problem
	Cause
	Resolution

	CannotLoadBeanClassException: Error loading class
	Problem
	Cause
	Resolution

	Apache Camel Shutting Down
	Problem
	Cause
	Resolution

	Sample Configuration Files
	registry.properties
	registry-config.xml
	hip-ppic-mapping.properties

	Index

